\title{

URBAM HGHWAY STOMM DRAMMEE MODEL \\ \\ \\ | Fecterex figh mursy | Final Report |
| :---: | :---: |
| 咸emminichtothon | December 198 |

Research, Development, and Technology

Turner-Fairbank Highway
Research Center
6300 Georgetown Pke
McLean, Virginia 22101

Repori No.

This report documents the development and presents the user's manual for the Inlet Design Program of the Hydraulics/Quality Module of this computer model. From the local design storms, either derived from the Precipitation Module or from other sources, this program computes the surface runoff on the highway, then determines the locations of the inlets according to the specified criteria.

Research and development in urban and rural highway storm drainage is included in the Federally Coordinated Program of Highway Research, Development, and Technology Project 5H "Highway Drainage and Flood Protection." Dr. Roy E. Trent is the Project Manager and Dr. D. C. Woo is the Contracting Officer's Technical Representative for this study.

This report is being distributed on request only due to the specialized nature of the contents.

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof. .

The contents of this report reflect the views of the Office of Research of the Federal Highway Administration, which is responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official policy of the Department of Transportation.

This report does not constitute a standard, specification, or regulation.
The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein only because they are considered essential to the object of this document.

TABLE OF CONTENTS
Page No.
TECHNICAL REPORT DOCUMENTATION PAGE i
LIST OF FIGURES iii
LIST OF TABLES iv
LIST OF EXHIBITS v
I. OVERVIEW OF THE URBAN HIGHWAY STORM DRAINAGE MODEL 1
II. INTRODUCTION TO THE INLET DESIGN PROGRAM 9
GENERAL APPROACH 9
LIMITATIONS 15
COMPUTATIONAL REQUIREMENTS 16
III. TECHNICAL APPROACH 17
COMPUTATIONAL ELEMENTS 18
SURFACE RUNOFF 18
GUTTER/CHANNEL ROUTING 22
INLET HYDRAULICS 25
IV. USER'S MANUAL 33
INPUT REQUIREMENTS 33
PROGRAM DESCRIPTION 54
EXAMPLE PROBLEM 122
v. REFERENCES 143

LIST OF FIGURES

Figure No. Page No.
I-1 Urban Highway Storm Drainage Model 3
II-1 Typical Urban Highway Drainage System 10
II-2 Schematic Diagrams of Typical Urban Highway Cross-section 11
III-1 Basic Flow Computations for Typical Watershed Subarea 19
III-2 Flow Calculations for Typical Channel 23
III-3 FHWA Depressed Curb Opening Inlet 27
III-4 Inlet Efficiency Curves for $2^{\prime} \mathrm{X} 4^{\prime}$ Parallel Bar Grate Inlet with Gutter Slope $=0.02$ 30
IV-1 Example Infiltration Curves 46
IV-2 Computational Unit Relationships 55
IV-3 Flowchart for Main Program Inlet 57
IV-4 Flowchart for Subroutine WSHED 82
IV-5 Flowchart for Subroutine OUTPUT 88
IV-6 Flowchart for Subroutine GUTTER 102
IV-7 Flowchart for Function DEPTH 110

Table No.

I-1	Major Features of the Precipitation Module	4
I-2	Major Features of Hydraulics/Quality Module Programs	5
I-3	Major Features of the Analysis Module	6
I-4	Major Features of the Cost Estimation Module	7
IV-1	Program Inlet Input Data Requirements	34
IV-2	Typical Values for Horton Infiltration Formula for Grassed Areas	47
IV-3	Typical Values for Mannina Coefficient for Overland	
Flow	53	
IV-4	Key Variables not in Common for Main Program INLET	64
IV-5	Key Variables not in Common for Subroutine RHYDRO	69
IV-6	Key Variables not in Common for Subroutine WSHED	84
IV-7	Key Variables not in Common for Subroutine OUTPUT	89
IV-8	Key Variables not in Common for Subroutine CARRY	94
IV-9	Key Variables not in Common for Subroutine GUTTER	104
IV-10	Key Variables not in Common for Function DEPTH	111
IV-11	Blank Common	114
IV-12	Common Block INLET	116
IV-13	Common Block TAPES	116
IV-14	Common Block NEW	117
IV-15	Common Block INFL	117
IV-16	Common Block ROUT	117
IV-17	Common Block LOC	118
IV-18	Common Block SYS	118
IV-19	Common Block CONT	119
IV-20	Common Block LENGTH	119
IV-21	Common Block SLOPES	120
IV-22	Common Block NOMOG	120
IV-23	Common Block SUMP	121

LIST OF EXHIBITS

Exhibit No. \quad Page No.
IV-1 Example Problem Input Data 123
$\begin{array}{lll}\text { IV-2 Example Problem Output } & 125\end{array}$

CHAPTER I

OVERVIEW OF THE URBAN HIGHWAY STORM DRAINAGE MODEL

The Urban Highway Storm Drainage Model consists of four modules in six computer programs, developed for the Federal Highway Administration, U.S. Department of Transportation by the Water Resources Division of Camp Dresser \& McKee Inc. The basic purpose of this package of programs is to provide the engineer with computational tools to assist in the analysis and design of highway drainage systems. Due to the nature of the problem, this model is not intended to fully automate the design process. Each module or program can be used separately to suit the designer's purpose.

The programs of the model are organized into four related but independent modules, as follows:

- Precipitation Module
- Hydraulics/Quality Module

Surface Runoff Program
Inlet Design Program Drainage Design Program

- Analysis Module
- Cost Module

The Precipitation Module can perform a variety of statistical analyses on long-term hourly precipitation data and generate design storm hyetographs. The Hydraulics/Quality Module is the basic design tool in the package. This module simulates time-varying runoff quantity and quality, locates stormwater inlets and sizes the conduits of the major drainage system. The Analysis Module simulates unsteady gradually-varied flow in the drainage system and can be used to analyze complex hydraulic conditions,
such as surcharge and backwater, that may be encountered during extreme storm events. The Cost Module can be used to estimate construction, operation and maintenance, and total annual costs associated with the drainage system.

The interrelationships among the computer programs are illustrated by Figure [-1. As can be seen from this figure, there are a variety of ways in which these programs can be used independently or in conjunction with each other. This flexibility should allow the engineer to apply one or more of these programs to a wide variety of common stormwater-related problems. The major features of each of the programs are summarized in Tables l-1 through I-4.

This chapter is intended only to give the reader a broad overview of the Urban Highway Storm Drainage Model. To gain an understanding of the potential applications, the capabilities and the limitations of a particular program in the package, the engineer will need to study the appropriate User's Manual and Documentation Report.

This report is the User's Manual and Documentation Report for the Inlet Design Program of the Hydraulics/Quality Module. Chapter II of the report is an introduction to this program, describing the general approach used in the program and how the program fits into the drainage design process. The technical approach employed in the program is presented in some detail in Chapter III. Finally, Chapter IV is a complete user's manual for the program including input requirements, a Fortran listing of the program, and an example problem.

To use this Inlet Design Program, the designer must first select the inlet to be used in his design. Normally, the State Highway Department has standard State inlets which have a particular design and certain sizes. The hydraulic efficiency of the selected inlet must be provided. The Program can store this information in equations or in curves in the format

FIGURE [I-T. Urban Highway Storm Drainage Model

TABLE I-T
MAJOR FEATURES OF THE PRECIPITATION MODULE

- Derivation of Hyetographs of Selected Return Frequency, Duration, and Skew
- Statistical Analysis of Hourly Rainfall Records to Generate Intensity-Duration-Frequency Curves
- Frequency of Occurrence Analysis of Hourly Rainfall Records for Peak Rainfall Intensity, Storm Duration, and Dry Period Duration
- Statistical Analysis of Hourly Rainfall Records for Storm Skew

TABLE T-2
MAJOR FEATURES OF HYDRAULICS/QUALITY MODULE PROGRAMS

INLET DESIGN PROGRAM (INLET)

- Simulation of Time-Varying Runoff and Gutter/Channel Flow
- Spacing of Fixed-Size Inlets in Gutters or Channels
- Prespecification of Inlet Locations if Required
- Simulation of Six Basic Inlet Types

SURFACE RUNOFF PROGRAM (SRO)

- Simulation of Time-Varying Runoff and Gutter/Channel Flow
- Simulation of Accumulation and Washoff of Suspended Solids and Associated Pollutants
- Simulation of All Inlet Types Considered in Inlet Design Program
- Simulation of Four Types of Gutters/Channels
- Generation of Runoff Tape (Inlet Hydrographs and Pollutographs)

DRAINAGE DESIGN PROGRAM (DRAIN)

- Standard Pipe Sizing
- Sizing of Trapezoidal Open Channels
- Routing of Pollutants Through Drainage System
- Simulation of Treatment at Outfalls (Suspended Solids Removal)

```
    TABLE I-3
MAJOR FEATURES OF THE ANALYSIS MODULE
```

- Analysis of Extreme Storm Event Hydraulic Conditions in the Major Drainage System Such as Surcharge, Backwater, and Surface Flooding
- Simulation of Unsteady Gradually-Varied Flow in the Major Drainage System
- Simulation of Channels and Pipes of Five Different Cross-Sections
- Simulation of Pumping Station Operation

TABLE I-4
MAJOR FEATURES OF THE COST ESTIMATION MODULE

- Calculation of Capital Costs for Construction of Major Drainage Systems
- Calculation of Operation and Maintenance Costs and Total Annual Costs for Major Drainage Systems
- Estimation of Excavation and Backfill Volumes Associated with Construction of Major Drainage Systems
of block data. The Izzard's equations for computing the hydraulic efficiency of the curb-opening inlet with FHWA depression on continuous grades have been programmed and included in the Program. The designer must also specify the criteria for determining the location of the inlets.

From the design storms derived from the Precipitation Module, this Program will compute the surface runoff on the highway, then determine the locations of the inlet according to the specified criteria.

CHAPTER II
INTRODUCTION TO THE INLET DESIGN PROGRAM

The highway storm drainage system consists of a surface runoff conveyance system and a major drainage system. In order for the entire drainage system to operate efficiently, it is necessary that both systems be properly designed. If the surface runoff conveyance system is poorly designed, highway runoff will be concentrated and local flooding will occur at sites along the highway, causing excessive traffic delays and inconvenience regardless of the quality of design of the major drainage system.

The design of the surface runoff conveyance system includes the location of stormwater inlets to intercept surface runoff and transmit it efficiently to the subsurface drainage system. The Inlet Design Program (INLET) is a computer-based tool for performing the inlet location task.

GENERAL APPROACH

Figure II-1 shows a section of typical urban highway including the major components of the drainage system. As can be seen in the figure, runoff from the highway surface and the surface of the right-of-way is collected in roadside gutters or drainage channels. The runoff is routed to a series of inlets, as shown in Figure II-2, located to remove runoff so as to prevent flooding of the highway surface. The runoff so collected is then routed through the underground conduit system, generally to a nearby stream or other body of water.

FIGURE II-1. Typical Urban Highway Drainage System

Figure II-2. Schematic Diagrams of Typical Urban Highway Cross-section

The purpose of Program INLET is to locate fixed-size inlets in the gutters or channels of the surface runoff conveyance system according to user-specified design criteria. Specifically, INLET will simulate timevarying surface runoff from a design storm and route the runoff through surface gutters and channels. The program will locate inlets in gutters such that the flow spread onto the highway surface is maintained within a user-specified maximum during the design storm. Similarly, the program can be used to locate inlets in channels such that a user-specified maximum depth is not exceeded during the design storm. If the user wishes to prespecify the location of selected inlets (e.g., at entrance and exit ramps), he may do so and the program will locate the remaining inlets.

In general, the engineer would typically follow the procedure outined below in using this program as a computational tool during inlet design:

1. Select the type and size of inlet to be used on continuous grades, in sump conditions, and in special locations.
2. Provide the inlet efficiency equations or inlet efficiency curves of these selected inlets to be used in the hydraulic calculations.
3. Determine the special locations where events must be placed (such as entrance or exit ramps).
4. Compute the remaining inlet locations with the InTet Design Program. To do this, the engineer must first divide the highway drainage area into a series of discrete gutter lengths, channel lengths, and watershed areas, the physical characteristics of which will be input to the program. The engineer must then select the appropriate design storm and run the program. (See Chapter IV for detailed instructions.)
5. Evaluate the inlet locations computed by the program along with the location of required inlets determined above.
6. Make the final determination of all inlet locations.

This program is developed based upon the following design criteria:

1. For inlets on continuous grades -
a. In curb and gutter sections, the maximum allowable width of gutter flow spread must be specified.
b. In roadside channels, the maximum allowable depth must be specified.
c. For economical reasons, inlets can be spaced so that each will intercept a minimum portion of the peak gutter flow. In this case, the carry-over factor, the intercepted portion of the peak gutter flow, must be specified.
2. For inlets at sump condition -
a. In curb and gutter sections, the maximum allowable depth of ponding must be specified and the program will check to see if this depth is exceeded.
b. In roadside channels, the maximum allowable depth must be specified and the program will check to see if this depth is exceeded.
3. Factors of safety - since it is possible for inlets to be completly plugged by road debris due to inadequate maintenance or some other unpredictable situations, a factor of safety is sometimes employed in spacing the inlets. This can be done through the arbitrary use of half of the actual length of the selected inlet in deriving the inlet capacity, or by attaching a specified reduction factor to the inlet capacity or the carry-over factor of the inlet.

Design Rainstorm
There are two sources for deriving the local storms for use in this program:

1. Output of the Precipitation Module; or
2. Storm specified by the user.

Inlet Efficiencies

The INLET can simulate the hydraulics of the following six basic inlet types:

- Curb Opening Inlet
- Depressed Curb Opening Inlet
- Grate Inlet
- Depressed Grate Inlet
- Combination Inlet
- Depressed Combination Inlet

The user may select only one inlet type for all the inlets on-grade in a single computer run. The inlet efficiencies can be programmed in one of the three forms: efficiency curves, efficiency curves in Block Data, and design equations.

A maximum of 24 efficiency curves can be programmed for one selected on-grade inlet. This covers the condition of four cross-slopes ($1 / 64,1 / 48$, $1 / 24$, and $1 / 16$) and six longitudinal slopes ($0.5,1,2,4,6$, and 9%) of the gutter channel.

The procedure to set up the Block Data for the efficiency curves is not described in detail in this report. The user is referred to the Fortran reference manual for the mainframe computer he is using, if he is not familiar with the Block Data option.

For the design equations, only Izzard's equation (1) for the Federal Highway Administration's depressed curb-opening inlets on continuous grades are programmed in INLET.

For the sump-inlet, only the general form of an orifice equation is programmed in INLET. In reality, the sump inlet functions like a weir or an orifice or something in-between. The user must provide the appropriate information for the selected inlet.

Computation of Inlet Locations

There are three elements which will dictate the manner of computation:

1. The location of the first inlet on a continuous grade:
a. may be prefixed by the user; or
b. may be computed by the program, starting from top of grade.
2. The location of the last inlet on a continuous grade may be:
a. pre-fixed by the user on the continuous grade; or
b. pre-fixed by the user at the level point of the sag vertical curve (or at the sump).
3. Note that flow to the inlet in the sump condition comes from both sides of this level point. Special attention should be given to the transition section from control by width of gutter flow spread on continuous grade to control by depth of ponding at the level point.

Computation Criteria

Careful selection of the time step used in the computation is required to insure that the Inlet Design Program converges on a suitable solution. Nonconvergent solutions are likely to occur if it is possible for a channel to completely empty or severely flood within one time step. The most critical parts of the drainage system in terms of convergence, therefore, are short channels.

Successful runs have been made with this program using time steps ranging from one to five minutes. If a first estimate in this range fails to produce a solution, however, a rough estimate of the time step can be made by computing:

$$
\begin{equation*}
\Delta t<\frac{L}{V} \tag{II-1}
\end{equation*}
$$

where Δt is the time step, L is the channel length and V is the velocity of flow, for any non- convergent channels in the solution. The user should attempt to use the largest time step possible, though, to hold down computer costs.

LIMITATIONS

There are several limitations imposed on the user by the Program as presently structured. These limitations include:

- Inlets may be spaced in a single continuous series of gutter or channel sections, from the top of grade to the sump, with each program run;
- The program will locate inlets only at the downstream end of incremental gutter or channel sections (the incremental length being a constant specified by the user);
- The number of gutter or channel sections must be less than or equal to 200:
- The number of watersheds must be less than or equal to 200;
- The number of subareas per watershed must be less than or equal to three;
- The number of raingages must be less than or equal to ten;
- The number of infiltration types must be less than or equal to four (not including impervious surfaces);
- The number of inlets located must be less than or equal to 50; and
- The number of prespecified inlets must be less than or equal to 20.

COMPUTATIONAL REQUIREMENTS

Program INLET was developed on a CDC 6600/6700 shared system at the Naval Ship Research and Development Center in Carderock, Maryland. The program requires approximately $61000{ }_{8}$ words of central memory. Execution of a single gutter system with 10 separate sections and 10 watersheds which spaced 17 inlets required approximately 45 seconds of central processing unit time.

TECHNICAL APPROACH

The location of inlets in the highway right-of-way is considered in the following general terms. The program operates on a single continuous length of gutter or channel extending from the top of grade to the sump. The gutter or channel is divided by the user into a series of sections, each section having constant geometric and hydraulic properties such as width, side slopes, longitudinal slope, and roughness. Similarly, the drainage area on either side of the gutter or channel is divided into a series of watersheds, each with constant properties such as slope, infiltration characteristics, and depression storage. (Each watershed may be further divided into up to three subareas; this process is described below).

The program operates by first calculating time-varying runoff based on watershed characteristics and the input design storm hyetograph. The runoff is then routed through the gutter or channel sections being simulated and relevant characteristics, such as flow spread and depth, calculated at each time step. The program checks the flow characteristics along the gutter or channel section at increments prespecified by the user. Inlets are then located to maintain flow for the storm duration within the spread or depth specified by the user. If the program cannot satisfy the flow depth or spread criterion because the size inlet selected does not have sufficient capacity or because the incremental length is too great to allow proper spacing of the inlets, then the program will print an error message and stop execution.

The remainder of this chapter presents a discussion of the technical approach used by the program to implement the algorithm described above. Specifically, topics discussed include the definition of computational elements used in the program and the calculation of surface runoff, channel routing, and flow interception by inlets.

COMPUTATIONAL ELEMENTS

The gutters/channels and watersheds of the drainage area being simulated must be discretized into a series of computational elements by the user. The gutters or channels being simulated are divided into a series of sections having constant hydraulic and geometric characteristics, as mentioned above. Furthermore, the entire length of gutter or channel, L, is partitioned by the program into n segments of Δx length, where n is an integer and Δx is an incremental length selected by the user such that $L=n \Delta x$. The program checks every Δx along the gutter or channel for the need to locate an inlet.

The drainage area along either side of the gutter or channel must also be discretized into a series of watersheds of constant hydraulic and geometric characteristics. Each watershed must drain to a gutter; however, each watershed may be divided into as many as three subareas. Runoff is thus allowed to cascade from subarea to subarea before draining to a gutter or channel.

SURFACE RUNOFF

As stated above, each watershed may contain up to three subareas. The Inlet Design Program considers the flow from the upstream subarea to cascade to the immediate downstream subarea. The basic flow routing algorithm in the program is the kinematic wave approximation which assumes that the friction slope is equal to the slope of the plane. For this condition, the equations of continuity and uniform flow must be solved simultaneously to define at each time step the depth of flow and the outflow for each of the subareas in the watershed. The flow routing algorithm is applied sequentially to each subarea in the cascade.

The three-plane runoff computation sequence can be generalized for an arbitrary subarea as shown in Figure III-1. At the end of each time step, Δt, we have two unknowns, Q and d_{1}, and two equations as indicated in Figure III-1. Three flow depths are shown in the figure:

$$
\begin{aligned}
& \text { INFILTRATION: } I=k_{1}+\left(k_{2}-k_{1}\right) e^{-k_{3} t} \\
& \text { OUTFLOW: } Q=\frac{1.49}{n} S^{1 / 2} w\left(\frac{d_{0}+d_{1}}{2}-d_{s}\right)^{5 / 3} \\
& \text { INFLOW: } Q_{i} \\
& \text { STORAGE: } \frac{\Delta d}{\Delta t}=R-I+\frac{\left(Q_{i}-Q\right)}{A_{s}}
\end{aligned}
$$

FIGURE III-1. Basic Flow Computations for Typical Watershed Subarea

$$
\begin{aligned}
& d_{0}=\text { depth at time } t ; \\
& d_{1}=\text { depth at time } t+\Delta t ; \text { and } \\
& d_{s}=\text { average depth of depression storage }
\end{aligned}
$$

The objective of the calculations which pertains to this subarea is to find the new depth, d_{1}, determining, in the process, the outflow, Q, and maintaining mass continuity at all times. To accomplish this, two equations must be solved simultaneously. The first is the continuity, or storage, equation:

$$
\begin{equation*}
\frac{\Delta d}{\Delta t}=R-I+\frac{\left(Q_{\mathbf{i}}-Q\right)}{A_{S}} \tag{III-1}
\end{equation*}
$$

where

$$
\begin{aligned}
\Delta d & =d_{1}-d_{0} ; \\
R & =\text { rainfall intensity during } \Delta t ; \\
I & =\text { infiltration rate during } \Delta t ; \\
Q & =\text { outflow from subarea; } \\
Q_{i} & =\text { inflow from upstream subarea; and } \\
A_{s} & =\text { surface area of plane. }
\end{aligned}
$$

The second is the Manning equation for overland flow with the hydraulic radius set equal to average depth (wide channel assumption):

$$
\begin{equation*}
Q=\frac{1.49}{n} S^{1 / 2} w\left\{\left(\frac{d_{0}+d_{1}}{2}\right)-d_{s}\right\}^{5 / 3} \tag{III-2}
\end{equation*}
$$

where
$S=$ slope of ground surface;
$n=$ Manning coefficient; and
$w=$ width of the plane.

Here, we have two equations in two unknowns, Q and d_{1}. Note that the flow computation is based on the average depth during Δt, and that surface detention is not included in the effective depth of flow. Rainfall intensity is an input quantity, variable in time, but considered
constant during each time interval Δt. Infiltration is computed by a modified Horton formula written as

$$
\begin{equation*}
I=k_{1}+\left(k_{2}-k_{1}\right) e^{-k_{3} t} \tag{III-3}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathrm{I} & =\text { infiltration loss rate, inches per hour; } \\
\mathrm{k}_{1}, \mathrm{k}_{2} & =\text { minimum and maximum infiltration rates, respectively; } \\
\mathrm{k}_{3} & =\text { exponential rate loss in infiltration capacity; and } \\
\mathrm{t} & =\text { time in hours. }
\end{aligned}
$$

During periods of light or zero rainfall, the net precipitation value, R-I, could become negative. Traps in the computer program prevent this occurrence and thus modify the Horton approach.

The equations III-1 and III-2 are nonlinear aloebraic equations and their simultaneous solution is performed by the Newton-Raphson iterative technique. First, these two equations are combined and rearranged in the form:

$$
\begin{equation*}
F=\Delta d-\Delta t\left(k d^{5 / 3}+R_{n e t}\right)=0 \tag{III-4}
\end{equation*}
$$

where

$$
\begin{aligned}
& F=\text { Newton's function } \\
& k=-\left(\frac{1.49}{n} s{ }^{1 / 2} w\right) / A_{s} \\
& \tilde{d}=\frac{d_{0}+d_{1}}{2}-d_{s}=d_{0}-d_{s}+\frac{\Delta d}{2} \\
& R_{\text {net }}=\left(R+\frac{Q_{i}}{A_{s}}-I\right)
\end{aligned}
$$

Then, differentiating F with respect to Δd yields

$$
\begin{equation*}
\frac{d F}{d(\Delta d)}=1-\Delta t \frac{5}{6} k^{2} \mathrm{~d}^{2 / 3} \tag{III-5}
\end{equation*}
$$

The Newton-Raphson technique then uses the following interative calculation to find Δd :

$$
\begin{equation*}
(\Delta d)_{n+1}=(\Delta d)_{n}-\frac{F_{n}}{\frac{d F_{n}}{d(\Delta d)}} \tag{III-6}
\end{equation*}
$$

The subscripts refer to the $n^{\text {th }}$ and $(n+1)^{\text {th }}$ iterations. Repeated application of this expression converges upon $F=0$. However, because of the possibility of truncation when subtracting numbers that are very close to each other, F may never converge upon 0 on some computers, although an adequate solution has been reached. For this reason, the convergence check is based on the percentage change in $\Delta \mathrm{d}$ from the previous iteration reaching some small value. The convergence criterion used is:

$$
\begin{equation*}
\left|(\Delta d)_{n+1}-(\Delta d)_{n}\right|<\left|0.01(\Delta d)_{n}\right| \tag{III-7}
\end{equation*}
$$

The corresponding value of Δd gives the final depth, d_{1}, and the outflow, Q, can then be calculated from equation III-2. The solution is then repeated for the next subarea in the cascade. The outflow from the downstream-most subarea is considered the outflow from the watershed and is input to the channel draining this watershed. The entire sequence is repeated for all time steps in the surface runoff simulation period.

GUTTER/CHANNEL ROUTING

The surface runoff calculated as described above is next routed through the gutters or channels of the highway right-of-way. Consider the typical trapezoidal channel shown in Figure III-2. (Note that a curb and gutter would just be a special case of the trapezoidal channel with the bottom width set equal to zero.) The outflow from each channel, Q, is determined beginning with the most upstream channel and working downstream, the outflow from each channel then serving as inflow to the next downstream channel if no inlet has been located at the end of the upstream channel. If an inlet has been located there, the appropriate carryover flow is calculated as described in the next section of this chapter.

FIGURE III-2. Flow Calculations for Typical Channel

As with watershed subareas, the two unknowns at the end of each time step are Q and d_{1}. The known quantities are inflows, Q_{i}, Q_{W}, and depth d_{0}, where
$d_{0}=$ depth at time $t ;$
$\mathrm{d}_{1}=$ depth at time $\mathrm{t}+\Delta \mathrm{t}$;
$Q_{i}=$ inflow from upstream gutter or channel;
$Q_{W}=$ inflow from adjacent watershed subareas; and Q = outflow from channel.

Note that Q_{W} is the outflow from the downstream-most plan of the cascaded subareas of the given watershed, as discussed above.

The solution for d_{1} and Q is similar to that used to compute flow off watershed subareas. Again, the kinematic wave approximation is made, and the equations of continuity and uniform flow are solved simultaneously at each time step. The continuity equation is:

$$
\begin{equation*}
\frac{\Delta V}{\Delta t}=Q_{i}+Q_{W}-Q \tag{III-8}
\end{equation*}
$$

where

$$
\Delta V=\text { volume change associated with } \Delta d .
$$

The outflow \cap is determined from the Manning equation:

$$
\begin{equation*}
Q^{*}=\frac{1.49}{n} \mathrm{~S}^{1 / 2} \mathrm{R}_{\mathrm{h}}^{2 / 3} \mathrm{~A} \tag{III-9}
\end{equation*}
$$

where

$$
\begin{aligned}
Q^{*} & =\text { Outflow from channel at } d_{0} \text { or } d_{1} \\
S & =\text { slope of channel bottom } \\
n & =\text { Manning coefficient } \\
R_{h} & =\text { hydraulic radius (A/wetted perimeter) } \\
A & =\text { cross-sectional area of flow }
\end{aligned}
$$

Q* is computed for both d_{0} and d_{1} and the average taken as Q. The Newton-Raphson iterative technique is employed to solve equations III-8 and III-9. These equations are combined and Newton's function F is formed as follows:

$$
\begin{equation*}
F=\Delta V+\Delta t\left(0-Q_{i}-Q_{W}\right)=0 \tag{III-10}
\end{equation*}
$$

in which ΔV and Q are expressed in terms of d_{0} and d_{1}. The Newton's function F is differentiated with respect to Δd and the following iterative formula used:

$$
\begin{equation*}
(\Delta d)_{n+1}=(\Delta d)_{n}-\frac{F_{n}}{d F_{n}} \frac{d(\Delta d)}{} \tag{III-11}
\end{equation*}
$$

The subscripts refer to the $n^{\text {th }}$ and $(n+1)^{\text {th }}$ iterations. As in the subarea calculations, a convergence criterion other than $F=0$ is required. The following criterion is used and has proven to be stable and efficient:

$$
\begin{equation*}
\left|Q_{n+1}-Q_{n}\right|<0.001\left(Q_{n+1}\right) \tag{III-12}
\end{equation*}
$$

After a solution for d_{1} and Q is reached, the procedure is repeated for the next channel downstream, Q becomming Q_{i} for that channel.

INLET HYDRAULICS

The algorithm used to locate inlets in the gutters and channels of the highway right-of-way was described briefly above and will be discussed further in the next chapter. An integral part of the inlet spacing algorithm is the simulation of inlet hydraulics. Specifically, the program can calculate the flow intercepted by several different types of inlets as a function of the gutter/channel characteristics and the gutter/channel flow. The remainder of this section describes the technical approach used by the program to simulate inlet hydraulics.

The Inlet Design Program is structured to allow the user to simulate six basic types of inlets:

- Curb Opening Inlet;
- Depressed Curb Opening Inlet;
- Grate Inlet;
- Depressed Grate Inlet;
- Combination (Curb Opening and Grate) Inlet; and
- Depressed Combination Inlet.

The hydraulics of an inlet on grade may be simulated by either an equation approach or by an inlet efficiency curve approach. Equations developed by Izzard (1) and described below are available in the program to simulate the hydraulics of FHWA depressed curb opening inlets. At present, no other inlet equations are in the program, but the Fortran code is structured to allow easy addition of equations for the other inlet types. (See the description of Subroutine Carry in the following chapter.)

As an alternative to the equation approach, inlet efficiency curves supplied as input can be used by the program to compute flow interception by inlets. Efficiency curves which give percent interception versus total gutter/channel flow can be input for a fixed-size inlet of any of the six types listed above.

The hydraulic performance of the sump inlet is approximated by an orifice equation approach, described below.

FHWA Depressed Curb Opening Inlets on Continuous Grades - Izzard Methodology

A methodology has been developed by Izzard (1) to determine the flow properties of the FHWA depressed curb opening inlet, as shown in Figure III-3. The methodology proceeds as follows.

Based upon the depth flow in the gutter and the crosssectional properties of the gutter, the flow spread $T(f t)$ and the

FIGURE III-3. FHWA Depressed Curb Opening Inlet
flow Q (cfs) may be determined. The design engineer is required to specify the depression width $W(f t)$. The depression depth is assumed to be equal to W/12 (feet). The following steps are then followed to compute the flow characteristics.

Step 1: Compute Froude Number:

$$
\begin{equation*}
F_{W}=\frac{0.262}{n}\left\{(T-W) S_{x}\right\}^{1 / 6} S^{1 / 2} \tag{III-13}
\end{equation*}
$$

where
$\mathrm{F}_{\mathrm{W}}=$ Froude Number at a distance W from the curb face
$n=$ Mannings coefficient for the gutter
$W=$ Depression width (ft)
$S_{X}=$ Cross slope of the pavement section ($\mathrm{ft} / \mathrm{ft}$)
$\mathrm{S}=$ Longitudinal slope of the pavement $(\mathrm{ft} / \mathrm{ft})$
$\mathrm{T}=$ Width of spread of approach flow (ft)

Step 2: Compute L_{1} :

$$
\begin{equation*}
\mathrm{L}_{1}=2.79 \mathrm{~W}^{-1 / 6} \mathrm{~S}_{\mathrm{x}}{ }^{0.3} \mathrm{~F}_{\mathrm{w}} \mathrm{~T} \tag{III-14}
\end{equation*}
$$

where L_{1} is a characteristic inlet length given by the above equation.
Step 3: Compute maximum inlet length for weir flow:

$$
\begin{equation*}
L_{\max }=3.67 W^{-1 / 6} \mathrm{~S}_{x}{ }^{0.5} \mathrm{~F}_{\mathrm{w}}{ }^{\top} \tag{III-15}
\end{equation*}
$$

where $L_{\text {max }}$ is the maximum length for weir flow (ft).

Step 4: Compute inlet length for complete interception;

$$
\begin{equation*}
L_{100}=1.85 W^{1 / 6} F_{W} T \tag{III-16}
\end{equation*}
$$

where L_{100} is the length for complete interception (ft).

Step 5: Compute flow intercepted and carryover flow:

$$
\begin{align*}
& Q_{I}=\left(\frac{L_{I}}{L_{1}}\right) Q \text { when } L_{I}<L_{\max } \tag{III-17}\\
& Q_{I}=\left(\frac{L_{I}}{L_{100}}\right)^{0.4} Q \text { when } L_{I} \geq L . \tag{III-18}\\
& Q_{C}=Q-Q_{I} \tag{III-19}
\end{align*}
$$

where

$$
\begin{aligned}
Q & =\text { total gutter flow at inlet (cfs) } \\
Q_{I} & =\text { flow intercepted by inlet (cfs) } \\
Q_{C} & =\text { carryover flow (cfs) } \\
L_{I} & =\text { length of inlet (ft) }
\end{aligned}
$$

The equations presented are most accurate for $W=2 \mathrm{ft}$. and are reliable for $W<2 \mathrm{ft}$. For $\mathrm{W}>2 \mathrm{ft}$., results obtained from the equations have not been confirmed.

Inlet Efficiency Curves

The simulation of inlet hydraulics by means of inlet efficiency curves proceeds as follows. The user supplies as input a group of inlet efficiency curves for the size and type of inlet in question, as shown in Figure III-4. (Actually, the user supplies the coordinates of points that define the curves.) The curves give the percentage of gutter or channel flow intercepted by the inlet as a function of the total gutter or channel flow at a given point in time. For inlets in gutters, the flow interception capacity is a function of both the longitudinal slope and the cross-slope of the highway surface; thus, a family of curves, one curve for each of several typical longitudinal slopes and cross-slopes, must be supplied. For inlets in channels, the flow interception capacity is a function of the channel slope; a family of curves for typical channel

FIGURE IIT-4
INLET EFFICIENCY CURVES FOR $2^{\prime} \times 4^{\prime}$ PARALLEL BAR GRATE INLET WITH LONGITUDINAL SLOPE $=0.02$ (2)
slopes must be input by the user. In the example curves of Figure III-4 Q_{I} is the flow intercepted by the inlet, Q is the gutter/channel flow, and S_{x} is the cross-slope of the highway.

For a given inlet, the program will select the appropriate inlet efficiency curve to use based on the slope of the gutter/channel section where the inlet is located and the cross-slope of the highway, if appropriate. At each time step, the program then calculates the gutter/ channel flow, determines the inlet efficiency from the curve, and computes the flow intercepted by the iniet and the flow carried over to the next gutter/channel section.

Sump Inlet

The hydraulic performance of the sump inlet is computed with an orifice equation approach. The program assumes that the sump has the following typical dimensions: 1) a maximum depth (curb height) of one foot; 2) a cross-slope of $1 / 24$; and 3) a longitudinal slope of 0.2%. The following orifice equation is used to calculate flow interception by the inlet in the sump:

$$
\begin{equation*}
Q_{I}=C A(2 g H)^{\frac{1}{2}} \tag{III-20}
\end{equation*}
$$

where

$$
\begin{aligned}
& Q_{I}=\text { flow intercepted by the inlet (cfs) } \\
& C=\text { orifice discharge coefficient } \\
& g=\text { acceleration due to gravity }\left(=32.2 \mathrm{ft} / \mathrm{sec}^{2}\right) \\
& H=\text { depth at inlet (ft) } \\
& A=\text { area of inlet opening }\left(\mathrm{ft}^{2}\right)
\end{aligned}
$$

Note that the area of the inlet opening is calculated by multiplying an inlet length and an inlet width input by the user. This should be kept in mind if the user is specifying a grate inlet in the sump whose opening area is less than its total area, or if the user wishes to account for clogging.

The program first calculates the volume of flow into the sump at the given time step. This flow volume is added to any ponded water that may remain from the previous time step. If the resulting total volume of ponded water exceeds the maximum volume of the sump (i.e., the depth of ponding exceeds the curb height), then the excess volume is considered lost to flooding and the total volume of ponded water is set equal to the sump volume. A running total is kept of the excess flow volume.

The volume of ponded water is then used to calculate the depth of ponding at the inlet (H) and with equation III-20, the resulting flow into the inlet. The volume of ponded water is reduced by the volume that flows into the inlet during the time step. The program then proceeds to the next time step and repeats the above series of computations.

Upon completing the sump inlet calculations, a summary of the hydraulic conditions at the sump is printed. Included in this summary are: 1) the maximum spread of ponded water during the storm; 2) the maximum depth of ponded water; 3) the peak flow to the sump; and 4) the total volume of ponded water in excess of the sump volume.

USER'S MANUAL

The Inlet Design Program requires as input a series of cards describing the drainage area to be simulated, the design hyetograph, and the relevant design criteria. The program output includes a rainfallrunoff continuity summary, the location of the required inlets, and the peak hydraulic conditions at each inlet during the design storm. This chapter gives the input requirements for the program, a detailed program description and an example problem.

INPUT REQUIREMENTS

The input data required by the Inlet Design Program and the formats in which the data must be supplied are presented in Table IV-1. Input data are divided into the following seven card groups:

- Card Group 1: Simulation Control Data
- Card Group 2: Rainfall Data
- Card Group 3: Infiltration Data
- Card Group 4: Inlet Data
- Card Group 5: Prespecified Inlet Data
- Card Group 6: Gutter/Channel Data
- Card Group 7: Watershed Data

Data required in each of these card groups are discussed below.

Card Group One: Simulation Control Data

Card Group 1A of this card group consists of two title cards which can be used to describe the drainage project being designed.

TABLE IV-1
PROGRAM INLET INPUT DATA REQUIREMENTS

Card Group	Format	Card Column	Description	Variable Name	Default Value
			SIMULATION CONTROL CARDS		
1 A	20A4	1-80	Title Information (2 cards)	TITLE(40)	-
1B	17	1-7	Start Stationing (hundreds of feet or meters)	IS100	-
	I1	9	Start Stationing (tens of feet or meters)	IS10	-
	I1	10	Start Stationing (units feet or meters)	IS1	-
	I7	11-17	Final Stationing (hundreds of feet or meters)	IF100	-
	I1	19	Final Stationing (tens of feet or meters)	IF10	-
	I1	20	Final Stationing (units feet or meters)	IF1	-
	I5	21-25	Number of Time Steps	NSTEP	-
	F5.0	26-30	Time Step Length (minutes)	DELT	-
	I5	31-35	Number of Raingage's	NRGAG	-
	I5	36-40	Units Option (IMET=0 - British units) (IMET=1 - Metric units)	IMET	0
1 C	315	1-5	Upstream Gutter Flow Depth Scratch Disc File	NU	-

TABLE IV-1
PROGRAM INLET INPUT DATA REQUIREMENTS
(Continued)

TABLE IV-1
PROGRAM INLET INPUT DATA REQUIREMENTS
(Continued)

Card Group	Format	Card Column	Description	Variable Name	Default Value
3B	4F10.0	1-10	Maximum Infiltration Rate (in/hr or mm/hr)	WLMAX(K)	-
		11-20	Minimum Infiltration Rate ($\mathrm{in} / \mathrm{hr}$ or $\mathrm{mm} / \mathrm{hr}$)	WLMIN(K)	-
		21-30	Decay Rate (hour ${ }^{-1}$)	DECAY (K)	-
		31-40	Maximum Infiltration (inches or millimeters)	DEPIN(K)	-
			INLET CARDS		
4A			Inlet Type (ITYPC) 1 = Curb Opening Inlet $2=$ Depressed Curb Opening Inlet 3 = Grate Inlet 4 = Depressed Grate Inlet 5 = Combination Inlet $6=$ Depressed Combination Inlet		
	I10	1-10	Type of Inlet on Grade (1-6)	ITYPC	-
	F10.0	11-20	Incremental Routing Length (feet or meters)	DX	-
	F5.0	21-25	Minimum Capture Ratio for Inlets on Grade (ratio of flow intercepted to gutter/ channel flow)	RIN	-
	F5.0	26-30	Routing Direction + 1 - Ascending Direction - 1 - Descending Direction	DIR	-
	I5	31-35	Incremental Routing Length Reduction Factor	MULT	1

TABLE IV-1
PROGRAM INLET INPUT DATA REQUIREMENTS
(Continued)

TABLE IV-1
गROGRAM INLET INPUT DATA REQUIREMENTS
(Continued)

| Card | | | | |
| :--- | :--- | :---: | :---: | :---: | :---: |
| Group | Format | Card | Variable | Default |

4B
Efficiency Curves for Inlets on Grade
in Gutters
24 curves, one curve per card. First six cards for cross-slope of $1 / 64$ with gutter slopes of $0.5,1,2,4,6$, and 9%, respectively; second six cards for cross-slope of $1 / 48$ with same gutter slopes of $0.5-9 \%$; third six cards for cross-slope of $1 / 24$ with same six gutter slopes; last six cards for $1 / 16$ cross-slope and same gutter slopes.

12F6.2 1-6 Ratio of Flow Intercepted to Gutter Flow $\quad \operatorname{QinLG}(I, J, 1) \quad 1.0$

7-12 Gutter Flow (cfs or cms) OINLG(I, J,2) 0.0
13-18 Ratio of Flow Intercepted to Gutter Flow

QINLG(I, J, 3) -
19-24 Gutter Flow (cfs or cms).
OINLG(I,J,4) -
25-30 Ratio of Flow Intercepted to Gutter Flow

QINLG(I,J,5) -
31-36 Gutter Flow (cfs or cms)
37-42 Ratio of Flow Intercepted to Gutter Flow

OINLG(I,J,7) -
43-48 Gutter Flow (cfs or cms) OINLG(I, J, 8) -
49-54 Ratio of Flow Intercepted to Gutter Flow

OINLG(I,J,9) -
55-60 Gutter Flow (cfs or cms) QINLG(I, J,10) -
61-66 Ratio of Flow Intercepted to Gutter Flow
$\operatorname{OINLG}(\mathrm{I}, \mathrm{J}, 11)-$
67-72 Gutter Flow (cfs or cms) OINLG(I, J, 12) -

TABLE IV-1
PROGRAM INLET INPUT DATA REQUIREMENTS
(Continued)

Card Group	Format	Card Column	Description	Variable Name	Default Value
			Include Card Group 4C only if the depressed curb opening inlet is being used (i.e., ITYPC $=2$) and the inlet design equations in the program are being used (i.e., INOMG $=2$). Otherwise, omit this card group.		
4 C	2F10.0	1-10	Apron Depression Width (feet or meters)	W	-
		11-20	Inlet Length (ft or m)	GLI	-
			Include Card Group 4D only if the surface conveyance system is channels (i.e., NPG = 2) and the user is supplying efficiency curves for inlets on grade (i.e., $\operatorname{INOMG}=0$).		
4 D	12F6. 2		Efficiency Curves for Inlets on Grade in Channels		
			6 curves, one curve per card for channel slopes of $0.5,1$, 2, 4, 6, and 9%, respectivety.		
		1-6	Ratio of Flow Intercepted to Channel Flow	OTINLG(I, J,1)	1.0
		7-12	Depth (ft or m)	OPINLG(I, J, 2)	0.0
		13-18	Ratio of Flow Intercepted to Channel Flow	QINLG(I, J, 3)	-
		19-24	Depth (ft or m)	O̧INLG(I, J, 4)	-
		ग5-30	Ratio of Flow Intercepted to Channel Flow	OTINLG(I, J, 5)	-

TABLE IV-1
PROGRAM INLET INPUT DATA REQUIREMENTS
(Continued)

TABLE IV-1
PROGRAM INLET INPUT DATA REQUIREMENTS
(Continued)

TABLE IV-1
PROGRAM INLET INPUT DATA REQUIREMENTS
(Continued)

Card Group	Format	Card Column	Description	Variable Name	Default Value
	F10.0	71-80	Manning Roughness Coefficient	GN(N)	-
6B	I10	1-10	Number of DX Lengths in Gutter/ Channel	NG2	-
	F10.0	11-20	Design Flow Spread (ft or m) (only for gutter case)	$\operatorname{SPMAX}(\mathrm{N})$	-
	F10.0	21-30	Design Depth (ft or m) (only for channel case)	DFULL (N)	-
			Terminate this card group with one blank card.		
			WATERSHED CARDS		
			Repeat Card Group 7A for each watershed, up to 200 watersheds.		
7A	I10	1-10	Name of Watershed (externa1)	NAMEW(N)	-
	I10	11-20	Gutter/Channel Drainage Side 1 or 2 (1 must be the highway side for gutters)	NGTO(N)	-
	110	21-30	Raingage Number	JK	-
	F10.0	31-40	Watershed Area (acres or hectares)	AREA	-
	110	41-50	Number of Watershed Subareas	NW3	-
	I7	51-57	Start Station (hundreds of feet or meters)	NW100	-
	I1	59	Start Station (tens of feet or meters)	NW10	-

TABLE IV-1
PROGRAM INLET INPUT DATA REQUIREMENTS
(Continued)

Card Group	Format	Card Column	Description	Variable Name	Default value
	I1	60	Start Station (units of feet or meters)	NW1	-
	I10	61-70	Number of DX Lengths in Watershed Width	NW2	
			Repeat Card Group 7B NW3 times for each watershed, immediately after the corresponding 7A card.		
7B	5F10.0	1-10	Fraction of Watershed Area	WAREA (N, K)	-
		11-20	Infiltration Type (leave blank for impervious areas)	WTYPE (N, K)	-
		21-30	Slope ($\mathrm{ft} / \mathrm{ft}$ or m / m)	WSLOPE (N, K)	-
		31-40	Depression Storage Depth (inches or millimeters)	WSTORE (N, K)	-
		41-50	Manning Roughness Coefficient	W4	
			Terminate Card Group 7 with one blank card		

Card Group 1B consists of a single card containing several simulation control variables. The first six variables give the highway stations at the beginning and end of the gutters or channels being simulated. The next two variables give the number of time steps, NSTEP, and the time step length in minutes, DELT. The next variable NRGAG gives the number of raingages to be employed. This allows the user to input more than one hyetograph if spatial variation of rainfall is considered significant for his project. For most applications of this program, one raingage will be sufficient.

The last variable on Card $1 B$ describes an option of the program. The units to be used are selected with variable IMET; IMET set equal to zero selects British units, IMET equal to one selects metric units.

Card Group 1C is used to identify the unit numbers on the user's computer system corresponding to the three disc files required by the program.

Card Group Two: Rainfall Data

This card group is used to input the design hyetograph(s), the duration and return frequency of which must be selected by the user in accordance with local design criteria. Card Group 2A consists of a single card that specifies the number of rainfall intervals, NHISTO, and the duration of the rainfall interval in minutes, THISTO.

Card Group 2B consists of as many cards as are required for the hyetograph(s) to be specified. Five rainfall intensities should be placed on each card. (If the number of rainfall intervals NHISTO is not an integral multiple of five, then the last card for each hyetograph will have fewer than five rainfall intensities.)

When more than one hyetograph is input (i.e., NRGAG >1 in Card Group One), all the cards for a given hyetograph should be fully specified before input of the next hyetograph is begun. Each hyetograph should begin on a new card and must have the same interval duration and number of intervals as every other hyetograph.

Card Group Three: Infiltration Data

This card group is used to specify the infiltration characteristics of up to four types of pervious surfaces in the drainage area being simulated. Card Group 3A gives the number of infiltration types, INFIL, to be specified. (The impervious surface type is included in the program itself and need not be specified here as input.)

Card Group 3B, a single card, is supplied for each infiltration type. The four variables given by this card are the four constants in the Horton infiltration formula, equation III-3 in the last chapter of this report. The Horton formula defines an infiltration curve, examples of which are given in Figure I $\forall-1$ and Table IV-2.

If no land types other than impervious surfaces are to be specified, then INFIL should be set equal to zero on Card Group 3A and Card Group 3B should be omitted.

Card Group Four: Inlet Data

This card group is used to specify the types of inlets to be located, the characteristics of the inlets and related information.

Card Group 4A contains several variables that control the inlet location task. The first variable is used to select the inlet types ITYPC for inlets on grade. Note that only one inlet type may be used for all the on-grade inlets in a single program run. The next variable, $D X$, is the incremental routing length; the program will check every

FIGURE IV-1. Example Infiltration Curves (3)
TABLE IV-2
TYPICAL VALUES FOR HORTON INFILTRATION
FORMLLA FOR GRASEED AREAS (4)

$\begin{gathered} \text { SCS } \\ \text { Hydrologic } \\ \text { Soil Group } \end{gathered}$	$\begin{aligned} & \text { Minimum } \\ & \text { Infilitration } \\ & \text { Rate, WLIMN (K) } \\ & (\text { (in } \mathrm{n} / \mathrm{hr}) \end{aligned}$	$\begin{gathered} \text { Maximum } \\ \text { Infilitration } \\ \text { Rate, WIMAX(K) } \\ (\text { in } / h r) \end{gathered}$	$\begin{aligned} & \text { Exponential } \\ & \text { Infiltration } \\ & \text { Rate Loss, DECAY } K)^{3} \\ & \text { (hour }-1) \end{aligned}$	
A	1.00	10.0	2.0	4.3
B	0.50	8.0	2.0	3.4
c	0.25	5.0	2.0	2.3
D	0.10	3.0	2.0	1.3

DX feet (or meters) along the gutters or channels for the need to locate an inlet. Tests of the program have indicated that a DX on the order of 25 feet or 50 feet is suitable for most applications.

The user specifies the minimum capture ratio to be achieved by each inlet on grade with the next variable, RIN. RIN is defined as the ratio of the flow intercepted by the inlet to the total gutter/channel flow at the inlet. The next variable, DIR, specifies the gutter/channel flow routing direction in terms of highway stations. If the highway stations increase from the upstream end to the downstream end of the gutters/channels, then DIR should be set equal to +1 ; if the stations decrease from the upstream end to the downstream end, then DIR should be set equal to -1 .

The incremental routing length reduction factor, MULT, allows the user to decrease the routing length DX if program runs show that the initial value of DX selected was too large to allow adequate inlet spacing. Card Groups Six and Seven, the gutter/channel cards and the watershed cards, use DX to define lengths; with MULT, the user can change the value of DX without having to change $D X$ on all the gutter/channel cards and the watershed cards. The value of DX specified will be multiplied in the program by the inverse of MULT.

The next variable on Card Group 4A, NPG, specifies whether the surface conveyance system being simulated consists of gutters or channels. Three options for on-grade inlet capacity computation are available; the next variable, INOMG, is used to select one of these options. If the user supplies inlet efficiency curves as input, then INOMG should be set equal to zero. If inlet efficiency curves stored in Block Data of the program are to be used, then INOMG should be set equal to one. If inlet capacity equations in the program are used, then INOMG should be set equal to two. (Note that the only equations presently in the code are those for depressed curb opening inlets in gutters.)

The next variable on Card Group $4 A$ is the inlet capacity reduction factor, RD. The flow intercepted by each on-grade inlet will be multiplied by this factor. RD allows the user to account for inlet capacity reduction by debris clogging, etc. The value of $R D$ should be in the range $0<R D \leq 1$.

The last three variables give the characteristics of the sump inlet. SWIDTH and SLENG are the width and length respectively of the sump inlet grate. SCOEFF is the orifice discharge coefficient for the inlet, as defined in equation III-20.

Card Group 4B is used to supply efficiency curves for on-grade inlets in gutters when this option has been selected. Use of the curves is explained in Chapter III and example curves are shown in Figure III-4. Twenty-four cards are required, one efficiency curve per card, as specified in Table IV-1. Each card contains twelve values, the two coordinates of six points on each curve. The points should proceed in order from zero gutter flow to the highest gutter flow. The first point on the curve should be (1,0); if the user does not supply this point, the program will.

Card Group 4C is supplied only if the surface conveyance system consists of gutters, if the on-grade inlet selected is a depressed curb opening inlet, and if the capacity equations for this inlet type are to be used. The only variables required here are the apron depression width, as defined in Figure III-3, and the inlet length.

Card Group 4D is used to supply efficiency curves for inlets in channels when this option has been selected. Six cards are required, one efficiency curve per card, as specified in Table IV-1. Otherwise, these cards are analogous to Card Group 4B.

Card Group Five: Prespecified InTet Cards

The characteristics of prespecified inlets are defined with these cards. Card Group 5A is a single card on which the number of prespecified inlets NSPEC is given. If no inlets are to be prespecified, then NSPEC should be set equal to zero and Card Group 5B skipped.

Card Group $5 B$ should be supplied for each inlet to be prespecified, one card for each inlet. The first three variables on the card give the highway station of the inlet. The last variable gives the inlet length.

Card Group Six: Gutter/Channel Cards

The gutters or channels which make up the surface conveyance system are described with these cards; two cards are required for each gutter or channe1. The conveyance system must be divided by the user into a series of gutter/channel lengths, each with constant geometric and hydraulic properties as given on these cards.

Card Group 6A is a single card with twelve variables. The first variable is the external number used to identify the gutter/channel. (The user should identify the gutters or channels being simulated with a consecutive numbering scheme which he finds convenient.) The next six variables define the upstream and downstream stations of the gutter or channel.

Hydrogeometric properties, including the cross-section of the gutter/channel in terms of a general trapezoidal cross-section, are given by the next five variables. The bottom width of the gutter/channel is given by variable GWIDTH(N); if the cross-section is triangular, then GWIDTH(N) equals zero. The longitudinal slope of the gutter/channel is supplied as GSLOPE (N). The next two variables define the reciprocal slopes (horizontal: vertical) of the sides of the gutter/channel. The first slope, GSI(N), should be the slope on the highway side. The last variable is the Manning roughness coefficient of the gutter/channel.

Card Group 6B is used first to define the number of incremental lengths DX (as given in Card Group 4A) in the gutter/channel length. Note that the gutter/channel length must be an integral multiple of DX. The second variable on this card group $\operatorname{SPMAX}(N)$ is used only for gutters and defines the maximum allowable flow spread. The last variable, $\operatorname{DFULL}(N)$, is used only for channels and defines the maximum allowable flow depth. These last two variables should be selected in accordance with local design criteria.

Note that for each gutter or channel the 6B card must follow immediately after the corresponding 6A card.

Card Group Seven: Watershed Cards

Characteristics of the drainage area being simulated are specified on these cards. The drainage area must be divided into a series of watersheds, each with constant hydraulic and geometric characteristics. In addition, each watershed may be divided into as many as three subareas, as explained in the discussion of surface runoff in Chapter III. Card Groups 7A and 7B must be provided for each watershed.

Card Group 7A contains nine variables describing the watersheds being simulated. The first variable gives the external number of the watershed, selected by the user for purposes of identification. The second variable, $\operatorname{NGTO}(N)$, identifies which side of the appropriate gutter or channel the watershed drains to. The sides are identified as sides one and two, corresponding to the gutter/channel side slopes GS1 and GS2 specified in Card Group Six. In general, the highway surface should drain to side one of the gutter or channel. The number of the raingage to be used for the watershed is given next as JK. JK corresponds to the number of the hyetograph as input in Card Group Two; the first hyetograph corresponds to JK equal to one, the second to JK equal to two, etc. If only one raingage is used, as will usually be the case, then JK must equal one for all watersheds.

The watershed area is specified by the next variable, AREA. The number of subareas in the watershed is specified next as NW3; this variable must be in the range $1 \leq N W 3 \leq 3$. The next three variables give the highway station at the upstream end of the watershed. The final variable on Card Group 7A is the number of incremental lengths DX (as specified on Card Group 4A) in the watershed width, parallel to the gutters or channels.

Card Group $7 B$ is supplied once for each subarea; thus, there can be from one to three $7 B$ cards following each 7A card. The first variable on this card, $\operatorname{WAREA}(N, K)$ is the fraction of the total watershed area in the subarea (given as a decimal). The second variable, WTYPE (N, K), identifies the infiltration type of the subarea. $W \operatorname{TYPE}(N, K)$ set equal to zero denotes impervious areas; WTYPE (N, K) set equal to an integer from one to four corresponds to the infiltration curves input as Card Group 3B. The average slope of the subarea, $\operatorname{WSLOPE}(N, K)$, is given next. The average depression storage depth for the subarea is supplied as WSTORE(N,K). Typical values of depression storage have been found to be on the order of 0.05 inches for impervious areas and 0.2 inches for pervious areas (5). The final value on this card is the Manning roughness coefficient for the subarea. Typical values of this coefficient for overland flow are shown in Table IV-3.

TABLE IV-3

TYPICAL VALUES FOR MANNING COEFFICIENT FOR OVERLAND FLOW (6)

Groundcover	Manning's n for Overland Flow
Smooth asphalt	0.012
Asphalt or concrete paving	0.014
Packed clay	0.030
Light turf	0.200
Dense turf	0.350
Dense shrubbery and forest litter	0.400

PROGRAM DESCRIPTION

General Structure

Program INLET is structured into eight computational units--Main Program INLET, Subroutine RHYDRO, Subroutine WSHED, Subroutine OUTPUT, Subroutine CARRY, BLOCK DATA, Subroutine GUTTER and Function DEPTH. The relationships among these units are illustrated in Figure IV-2. The main program INLET controls the computational sequence. The primary function of each subroutine is as follows:

- RHYDRO - Reads input data
- WSHED - Computes watershed flows
- OUTPUT - Prints location of required inlets
- CARRY - Computes inlet interception and carryover
- BLOCK DATA - Initializes data array
- GUTTER - Computes flow in each gutter/channel
- DEPTH - Computes gutter/channel depth corresponding to given flow

The main program and each of these subroutines is discussed in turn below, followed by a complete definition of all common block variables.

Main Program INLET

The following subroutines are called from the main program:

- GUTTER
- RHYDRO
- OUTPUT
- WSHED

FIGURE IV-2. Computational Unit Relationships

The following common blocks are employed in the main program:

- BLANK COMMON	- LOC	\bullet
- TAPES	RUMP	
- INLET	ROUT	
- SYS	CONT	
- LENGTH		

The main program INLET is presented in flowchart form in Figure IV-3. Subroutine RHYDRO is called to read all input data. Subroutine WSHED is next called to compute all watershed flows for all time steps. These flows are saved as watershed file NTAPE.

Initialization of gutter/channel section parameters and of the simulation time are next performed. The simulation proceeds from upstream to downstream considering each gutter/channel section over all time increments. A file is employed to store the hydrograph at the end of gutter/channel section I. This hydrograph becomes the inflow hydrograph to gutter/channel section I +1 . After depth and flow are computed for each time step for gutter/channel section $I+1$, the outflow hydrograph is written to a second file. Thus, for each gutter/ channel section, one file, containing the inflow hydrograph, is read and a second file, for the outflow hydrograph, is written.

Subroutine GUTTER is called to compute the depth and flow in each gutter/channel section, based on the watershed flows to that section and the inflow from the upstream section. If an inlet has been located at the end of the upstream section, either by the user as a prespecified inlet or by the program during the simulation, then subroutine CARRY is called to compute the percentage of outflow intercepted by the inlet and the percentage of outflow carried over to the downstream section.

The inlet location algorithm proceeds as follows. The entire gutter/channel to be simulated is divided into n increments of Δx length, as specified by the user. For a given gutter/channel length, the appropriate design criteria are checked at each time step. For gutters, the flow spread

FIGURE IV-3. Flowchart For Main Program INLET

Figure IV-3 (Continued)

Figure IV-3 (Continued)

Figure IV-3 (Continued)

Figure IV-3 (Continued)
is compared with the maximum allowable flow spread; for channels, the flow depth is compared with the maximum allowable depth. If an inlet has been prespecified at the end of the upstream gutter/channel length, then the maximum allowable carryover ratio is also checked.

If neither of the design criteria is violated at any time step, then the program proceeds to the next gutter/channel length downstream. However, if one of the design criteria is violated, then the program places an inlet at the end of the upstream gutter/channel length. In the special case when an inlet has been prespecified by the user at that location, the program stops execution and prints an error message indicating that the incremental length must be decreased or an inlet with greater capacity specified.

After the program places an inlet at the end of the upstream gutter/channel length, the simulation resumes, now including the reduction in outflow from the upstream gutter/channel due to the presence of the inlet. The program continues to check the appropriate design criteria at each time step. If neither criterion is subsequently violated, the inlet placed by the program is adequate and the program proceeds to the next downstream gutter/channel length. However, if either criterion is violated later in the simulation, the program will again try to place an inlet at the end of the upstream gutter/channel length. When the program finds that it has already placed an inlet at that location, the program stops execution and prints an error message indicating that the incremental length must be decreased or an inlet with greater capacity specified.

After all gutter/channel sections have been considered, the program assumes it has reached the sump. A check is made to see if the sump inlet has been prespecified; if not, an inlet is placed in the sump.

Continuity calculations are next performed and then printed. Subroutine OUTPUT is then called to print the design inlet specifications and thereby complete the simulation.

All key variables not contained in common are presented in Table IV-4. The listing of the main program follows.

Subroutine RHYDRO

This routine is called from the main program INLET to read all input data. No subroutines are called from Subroutine RHYDRO; however, the following common blocks are employed:

- ROUT
- TAPES
- BLANK COMMON
- NEW
- INFL
- INLET
- SYS
- LENGTH
- CONT
- SUMP

The major data groups are read in the following sequence:

- Simulation Control Data
- Rainfall Intensity Data
- Infiltration Characteristics
- Inlet Routing Parameters and Sump Inlet Data
- Inlet on Grade Data
- Prespecified Inlet Data
- Gutter/channel Definition Data
- Watershed Data

The exact card format for each data group was presented earlier in this chapter. Error checking is included in this routine for the gutter/channel and watershed stationing. If errors are encountered, an appropriate message is printed to inform the engineer how to correct the problem and the

TABLE IV-4
KEY VARIABLES NOT IN COMMON FOR MAIN PROGRAM INLET

FORTRAN VARIABLE	DESCRIPTION	UNITS
DMAX	Maximum gutter depth at sump inlet	ft or m
I ROUT	Current Inlet Locator Indicator Variable	--
ISAVE	Previous Inlet Locator Indicator Variable	--
GL	Previous inlet length	ft or m
SUMCHL	Sum of change in storage over all gutter sections	ft^{3} or m^{3}
SUMST	Sum of change in storage over all watersheds	ft^{3} or m ${ }^{3}$
TOTIN	Total inflow volume	ft^{3} or m^{3}
TOTOUT	Total outflow volume plus change in storage	ft^{3} or m^{3}
ERROR	Error in continuity as a percentage of total inflow volume	--

simulation is halted. The key variables not in common are as shown in Table IV-5 followed by the subroutine listing.

Subroutine WSHED

This subroutine is called from the main program INLET. No routines are called by Subroutine WSHED. The following common blocks are employed:

- BLANK COMMON
- INFL
- INLET
- CONT
- TAPES

The flowchart is presented in Figure IV-4. The subroutine consists of a nested set of DO loops of order three. The outer loop increments time. For each time step, the second loop increments over the watersheds. For each watershed, the rainfall intensity is determined for the current time step. The third and innermost loop considers each subarea within the given watershed. Up to three subareas may be specified for each watershed. These subareas are cascaded such that the outflow of an upstream subarea represents the inflow to its immediate downstream neighbor. The change in depth and outflow for each subarea is determined from water balance considerations using a Newton-Raphson iteration procedure. The outflow from the downstream-most subarea is written to a disc or tape file for each time step, to be subsequently routed through the gutters or channels of the runoff conveyance system.

The key variables not contained in common are presented in Table IV-6 followed by a listing of the subroutine.

TABLE IV-5

KEY VARIABLES NOT IN COMMON FOR SUBROUTINE RHYDRO

Fortran Variable	Description	Units
AREA	Watershed area	ft^{2} or m^{2}
DSTR	Previous Downstream Gutter Stationing	ft or.m
DSTRW(2)	Previous Downstream Watershed Stationing Along Each Side of Gutter	ft or m
IF1	Initial Stationing For Simulation (units)	ft or m
IF10	Initial Stationing For Simulation (tens)	ft or m
IF1øø	Initial Stationing For Simulation (hundreds)	ft or m
IS1	Final Stationing for Simulation (units)	$f t$ or m
IS10	Final Stationing For Simulation (tens)	ft or m
IS100	Final Stationing For Simulation (hundreds)	ft or m
NG1	Start Station for Given Gutter (units)	ft or m
NG10	Start Station for Given Gutter (tens)	ft or m
NG19 \emptyset	Start Station for Given Gutter (hundreds)	ft or m
NG2	Number of DX Routing Lengths Contained in Gutter Length	-
NINCRW(2)	Incremental DX Routing Length Counter for Watersheds	-
NP1	Final Station for Gutter or Watershed (units)	ft or m
NP10	Final Station for Gutter or Watershed (tens)	ft or m
NP100	Final Station for Gutter or Watershed (hundreds)	ft or m
NRANVL	Number of Rainfall Intervals	-
NW1	Start Station for Given Watershed (units)	ft or m
NW19	Start Station for Given Watershed (tens)	ft or m
NW190	Start Station for Given Watershed (hundreds)	ft or m
NW2	Number of DX Routing Lengths Contained in Watershed Width	-
NW3	Number of Subareas for Given Watershed	-

TABLE IV-5
(cont.)

Fortran Variable	Description	Units
USTR	Current Upstream Gutter Stationing Current Upstream Watershed Stationing Along Each Side of Gutter	ft or m
USTRW(2)	Upstream Watershed Station W1	Downstream Watershed Station Subarea Manning's Roughness Coefficient
W4	ft or m	

$\mathrm{N} H=200$
$G=200$

SUBROUTINE RHYORO

 NG $=200$
NRANVL $=200$
SUMR $=0$.

SUMGI $=0$ ．
SUMUP $=0$.
SO $220 I=$ ？

OOEPTH（I\＆J）$=0$ ．
RANIN（IqJ）
RAININ $240 I=19$ VG
VOLI $(I)=0$ ．
VOL2（I）＝0．
范
GLEN（I）$=0$ ， $260 I=1$ ，NG
AT $11, J i=0 \quad$ NRANUL
QNR
0.10
0.

ํ
$\begin{array}{ll}0 & 0 \\ \text { N } & 0 \\ 0\end{array}$
范
28
C
C
c＊＊＊＊＊＊＊＊READ SIMULATION CONTROL DATA
40
11
10
28
z

n

PAGE
$01 / 27 / 8116.40 .03$

SUBROUTINE RHYDRO

		7*ON-GRADE INLET CAPACIty NOMOGRAPHS FOR INLETS IN GUTtERS*. 8* (θ IN CMS) : $\pm, 1$) GO TO 6026
	c	
290	C****	english units output
	6024	WRITE(N6.1011)
	1011	FORMAT(*1*,54(2H--)/****EDERAL HIGHWAY ADMINISTRATION*, $14 \times$, 24CH**** URBAN HIGHWAY DRAINAGE MODEL *****
		38X,*WATER RESOURCES DIVISION*/**,*DEPARTMENT OF TRANSPORTATION**
295		$416 \mathrm{X}, 4 \mathrm{H****} 32 \mathrm{X},, 4 \mathrm{H****}, \mathrm{8x,*CAMP} \mathrm{ORESSER} \mathrm{\&} \mathrm{MCKEE*/***,*HASHINGTON**}$
		5* O.C.*,29X,4H****,5x,* INLET DESIGN PROGRAM *,5X,4H****,8X,
		6*ANNANDALE,VIRGINIA*,//,IX,
		7*ON-GRADE INLET CAPACITY NOMOGRAPHS FOR InLETS IN GUTTERS*,
300	6026	DO 5110 I= 1,4
		WRITE(N6,5005) ISLOP(I)
	5005	
		WRITE(NG,5120) (SLOP(J), J=1,6)
	5120	FORMAT * **1X.6(*S = *,F5.3.11x)/,2X06(10(1H-).10x)/)
305		WRITE(N6,5125)
	5125	FORMAT(1X,6(* QI/C*,5X,*Q*,9x))
		DO 5135 NLINE=1,6
		KK=NLINE*2
		K1 $=\mathrm{kk}-1$
310		WRITE(N6,5130) ((QINLG(I, J,K), K=K1,KK), J=1,6)
	5130	FORMAT(1X,6(F4.2,3X,F5.1,8X))
	5135	continue
	5110	continue
		60 T0 4066
315	60221	$0095105 \mathrm{~J}=1.6$
	95105	READ(N5,5111)(QINLG(1,J,K), $K=1,12)$
		GO TO 60222 (
	60223	$0096039 \mathrm{~J}=1,5$
		D0 96030 $\mathrm{K}=1,12$
320	96030	QINLG(1,, , K) $=$ OINLGC($\mathrm{l}, \mathrm{K})$
	60222	$006345 \mathrm{~J}=1,6$
		IF (GINLG(1,J,2).NE,0.) OINLG(1, ${ }^{(1) 2)=0 .}$
	6045	CONTINUE
325		IFIIMET.EQ.0)G0 TO 96024
		HRITE(NG,91111)
	91111	
		$240 \mathrm{H} * * * *$ URBAN HIGHWAY ORAINAGE MODEL ****,
		38x**WATER RESOURCES DIVISION*/***DEPARTMENT OF TRANSPORTATION**
330		
		5* O.C.**29X,4H****5X** INLET DESIGN PROGRAM **5x,4H****, 8x,
		6*ANNANOALE,VIRGINIA*, //,1X,
		7*ON-GRADE INLET CAPACITY NOMOGRAPHS FOR INLETS IN CHANNELS**
		8* (D IN METERS) : *, 1
335		60 T0 96026
	96024	WRITE (NG,91011)
	91011	
		240H**** UREAN HIGHMAY DRAINAGE MODEL ****,
		38X,*WATER RESOURCES DIVISION*/* *, \#DEPARTMENT OF TRANSPORTATION**
34		
		5* D.C.**29X,4H****,5x** INLET DESIGN PROGRAM *, 5x*4H*****8*
		6*ANNANDALE*VIRGINIA*,//.1X.

	Stop
1800	DSTR U USTR+GLEN(N)
	IF(IMET.EQ.0) GCON(N)=(1.486/GN(N) ${ }^{\text {a }}$ *SQRT(GSLOPE(N) $)$
	IF(IMET.EQ.1) GCON(N)=(1.000/GN(N)) * SQRT(GSLOPE(N))
480	continue
500	NOG $=\mathrm{N}-1$
	WRITE(N6.1150) NOG
1150	FORMAT(*OTOTAL NUMBER OF gUtters/channels :*,I4)
c	
C******** Watersheo data	
	tarea 0 .
	DO $2240 \mathrm{JKW}=1,2$
	DSTRW(JKW) = SSTRT $^{\text {d }}$
2240	NINCRH(JKH) $=0$
	$00340 \mathrm{~N}=1$, HE
	READ(N5,1060) NAMEH(N),NGTO(N),JK, AREA,NW3,NW100,NH10.NW10,NW2
1060	
	NH2=NH2*MULT
	W1=100.*FLOATEN100:+10.*FLOATENH108 FFLOETENH1)
	W2 2 W1 + NW2*DX
	NP100 $=$ W2/103.
	NP $1=1 F I X(W 2-N P 100 * 100 .-N P 10 * 10.8$
	IFSJK.EQ.0) JK=1
	IF (NAMEW(N).EQ.O) GO TO 360
C ${ }^{\text {c }}$	
C****	Print hatershto data
	IF (MOD(N, 2 BoNE, 1) G0 TO 4505
	WRITE(NG:1010) TITLE
	WRITESNG.9970)
9970	2/1/1
$\begin{aligned} & 4505 \\ & c \end{aligned}$	If(imet.eg.0) 60 T0 4510
C****	METRIC HEADING
	WRITE(N6.9974)
9974	FORMATA* * $31 \times$, hatershed hatershed station statign gutter
	G0 701069
c c	
$\begin{aligned} & C * * * * \\ & 4510 \end{aligned}$	english units megoing
	HRITESNG9975
9975	FORMATG *SIXg.hatershed hatershed station station gutter
1069	
	2,AREA, $\mathrm{NH}^{\text {3 }}$
C****540	pransfer oata hato convert units
	NHYET (N)
540	x=ngtorns
	J=NIMCRW(K)

\square
∞
∞
∞
$\$$ \square0
0
0
0
8
8
8
$\stackrel{10}{8}$
9

C
C*** ENGLISH UNITS HEADING
9986 WRIE
999699975)

$$
\begin{aligned}
& 90171 \text { FORMAT(5F10.0) } \\
& \text { WAREA } N \text {, } K)=W A R E A(N, K) \text { AREA } \\
& \text { JK=WTYPE }(N . K)
\end{aligned}
$$

FORMAT (**;39X,F10.2•I10,3F10.2, /')

 IF (IMET.IMET.EQ.1) WAREA(N,K)=WAREA(N;K)*10000.

IF(IMET.EQ.O) WCON(N•K)=-(1.486/W4)*SQRT(WSLOPE(N, K))*WWIDTH(N)/WA
条辰
2REANGK)
continue

GNNILNOJ $\begin{array}{r}0 \rightarrow 8 \\ 0 / 106\end{array}$

IF(IMET•EQ.g) GO TO 845
c**** METRIC OUTPUT
C**** MRTRIC OUTPUT NOW,TAREA
847 FORMATSGOTAT) NOTAL NUMBER OF

$\begin{array}{ll}\text { C } & \\ \text { C**** ENGLISH UNITS OUTPUT } \\ 845 & \text { WRITE(NG.11JO) NOH.TAREA } \\ 1100 \text { FORMATA*OTOTAL NUMBER OF } \\ \text { 2 *OTOTAL TRIBUTARY AREA }\end{array}$
2 *OTOTAL 1100
4
40

∞
0

10
0
0
0
0
n
n
10
M
n
8
in
10
in
0
0
0
4
0
0
0
n
n
n
570

FGGRE TM-4. Flowchart for Subroutine WSHED

Figure IV-4 (Continued)

KEY VARIABLES NOT IN COMMON FOR SUBROUTINE WSHED

	SUBROUTINE WSHED
C	
	2 TIME,TIMEZ,RI,RLOSS,TZERO, IMET
	COMMON WFLOH(200), WHIOTH(200), WSLOPE (200, 3), WN (200),
	2 WSTORE $(200,3)$, WDEPTH(200,3), WAREA 200,3$), W C O N(200,3), N A M E W(200) ~$
	COMMON GFLOW 200), GWIDTH(200), GLEN(200), GSLOPE(200), GS1(200),
	$2 \mathrm{GS2}(200), G \mathrm{C}(200), G D E P T H(200), G C O N(200)$, DFULL (200),
	3 SUMHQ (200),RAININ(200, 3), TITLE (40), NC (200), SPMAX(200)
	COMMON RAIN(200.10), NHYET (200), NRGAG,NHISTO, THISTO
	COMMON DELO(200), QIN (200)
	COMMON/INFL/INFIL, WTYPE(200, 3) ,WLMAX(4), WLMIN(4), DECAY(4), DEPIN(4)
	COMMON/CONT/SUMR, SUMI, SUMQI, SUMUP, VOLI (200), VOL2(200)
	COMMON/TAPESINTAPE,NU,ND, N5, N6
	DIMENSION WFLO 200,3$)$
C	
C*****	***** 8EGIN MAJJR LOOP FOR TIME
C	
	TIME=TZERO
	REWINO NTAPE
	DO 330 II 1 , NSTEP
	TIME = TIME + DELT
	TIME2 $=$ TIME-DELT2
C	
C*****	**** SElect average rainfall intensity during time step
C	
	INO=1**TIME2-TZERO)/HISTOG
C	
C******** BEGIN MAJOR LOOP FOR WSHED	
C	
	DO $320 \mathrm{~J}=1$, NOW
	RI=0.
	NGAG=NHYET(J)
	IF(TIME2•LE.TRAIN) RI=RAIN(IND, ${ }^{\text {(}}$ (GAG)
	DELR $=0$.
	NCA $=$ NC(J)
	DO $315 \mathrm{~K}=1$, NCA
	$\omega F L O(J, K)=0$ 。
	WFLOT=0.
	WAR=HAREA(J,K)
	IF (K.GY.1) WFLOT=WFLO(N.K-1)/WAR
	JTYP=WTYPE (JQK)
	IF(JTYF) 201.201.205
201	PLOSS $=0$.
	G0 ro 220
205	IFPRAININ(U,K) OLT.DEPIN(JTYP)) 60 TO 206
	RLOSS $=0.0$
	GO TO 220
206	RLOSS =WLMIN(JTYP)
	GO TO 215
C	
com*	COMPUTE AVERAGE SMFILTRAYTON DURING TIME STEP
215	EXPON=DECAYSUPYP\% (YIBE2-PIERO?
	2IEXP(EXPONY

4
n

```
page


This subroutine is called from main program INLET to print the characteristics of all inlets determined during the simulation. The following common blocks are utilized:
- BLANK COMMON
- INLET
- LOC
- COEFI
- ROUT
- TAPES
- SYS
- SUMP

The flowchart for Subroutine OUTPUT is presented in Figure IV-5. For each inlet, the location along the gutter or channel in terms of highway stationing is printed. The following characteristics of the gutter or channel section at this location are also printed:
- Longitudinal slope
- Bottom width
- Side slopes

The peak hydraulic conditions at each inlet are output in the following manner:
- Flow spread
- Flow depth
- Flow
- Velocity

Key variables not in common are presented in Table IV-7 followed by the listing.


FIGURE IV-5. Flowchart for Subroutine OUTPUT

\section*{TABLE IV-7}

KEY VARIABLES NOT IN COMMON FOR SUBROUTINE OUTPUT
\begin{tabular}{lll}
\hline \begin{tabular}{l} 
Fortran \\
Variable
\end{tabular} & \multicolumn{1}{c}{ Description } & Units \\
\hline ALOCUS & Flow Area in Gutter at Inlet & \(\mathrm{ft}^{2}\) or \(\mathrm{m}^{2}\) \\
I1 & Inlet Station (Units) & ft or m \\
I1Ø & Inlet Station (tens) & ft or m \\
I1Ø0 & Inlet Station (hundreds) & ft or m \\
QLOCUS & Flow in Gutter at Inlet & cfs or cms \\
VLOCUS & Velocity in Gutter at Inlet & fps or mps \\
WLOCUS & Flow Spread in Gutter at Inlet & ft or m \\
WP & Wetted Perimeter in Gutter at Inlet & ft or m \\
\hline
\end{tabular}





 \(I L 00=X L O C U S(I) / 100 \circ\)
\(T E M P=X L O C U S(I)-I 100 * 100\).
\[
\begin{aligned}
& I 10=T E M P / 10 \\
& \text { TEMP }=\text { TEMP } \\
& \text { I } 10 * 10
\end{aligned}
\]

0
\(0 \times 9\)
0
0
\(a\)
坔
\(m\)
11
\(m\)
\(m\)

JREF = JREF 1
IF PDIROLTO
IF \&OIR LTOQ JREF=NINCR-JREFI 2
\(N=N G U T\) IUREF:
WOCUS=GWIDTH\&N)

\(W P=S Q R T(G S 1(N) * 2+1 \bullet)+S Q R T(G S 2(N) * 2+1 *)\)
\(W P=W D * D L O C U S(\mathbb{*} * G W I D T H(N)\)

QLOCUS=GCON(N) (ALOCUS* 1.6
IF(GLOCUS.LE O) GOTO 1030
\(\xrightarrow{2}\)

8
\(\stackrel{4}{4}\)
\(\stackrel{\sim}{\sim}\)
m
앙
\(\stackrel{n}{\infty}\)
in
n
\(\checkmark\)
\(\stackrel{10}{\infty}\)
0
(1)

\[
2114
\]

OTO 200






Subroutine CARRY

This subroutine is called from Subroutine GUTTER to compute the carryover for the inlet immediately upstream of the gutter or channel section considered. Subroutine CARRY employs the following common blocks:
- BLANK COMMON
- SYS
- LOC
- INLET
- ROUT
- COEFI
- SUMP

For zero gutter/channel depth, the carryover flow is set to zero. For nonzero gutter/channel depth, the hydraulic conditions at the inlet are calculated based on the depth. For inlets on grade, the appropriate design equations based on inlet type, efficiency curves supplied as input, or efficiency curves from Block Data are used to determine the carryover. When efficiency curves supplied as input are used, the subroutine will select and use the appropriate curve based on longitudinal slope and cross-slope in the case of gutters and on longitudinal slope in the case of channels. The user may also elect the option whereby efficiency curves are built into the program in Block Data. In that case, the appropriate curve is selected from Block Data.

Key variables not in common are shown in Table IV-8, followed by a listing of this subroutine.

Block Data

This subroutine is used to initialize several variables used elsewhere in the program. The values of gutter/channel slopes and highway surface cross-slopes corresponding to the input inlet efficiency curves are set here. Also, two arrays for storing inlet efficiency curves in the program code can be initialized here by the user. Two sets of example

TABLE IV-8
KEY VARIABLES NOT IN COMMON FOR SUBROUTINE CARRY
\begin{tabular}{|c|c|c|}
\hline Fortran Variable & Description & Units \\
\hline ALOCUS & Gutter Flow Area & \(f t^{2}\) or \(m^{2}\) \\
\hline C & Flow for Inlets in Gutters & cfis or cms \\
\hline & Flow Depth for Inlets in Channels & ft or m \\
\hline DDES & Gutter Flow Depth for Sump Inlet & ft or m \\
\hline DQ & Gutter Flow Depth for Inlets on Grade & ft or m \\
\hline FW & Izzard Froude No. for Depressed Curb Inlets & - \\
\hline GLMAX & Izzard Depressed Curb Opening Maximum Length for Weir Phase & ft or m \\
\hline GL1 & Izzard Depressed Curb Opening Length One & ft or m \\
\hline GLIضø & Izzard Depressed Curb Opening Length for 100\% Interception & ft or m \\
\hline IXTRP & Flag for Extrapolation Beyond Last Point on Inlet Efficiency Curve & - \\
\hline QC & Carryover & cfs or cms \\
\hline QI & Intercepted Flow & cfs or cms \\
\hline Q & Gutter Flow to Inlet & cfs or cms \\
\hline SX & Gutter Cross Slope at Inlet (Side Slope 1) & \(\mathrm{ft} / \mathrm{ft}\) or m/m \\
\hline VLOCUS & Gutter Flow Velocity at Inlet & fps or mps \\
\hline WLOCUS & Gutter Flow Spread at Inlet & ft or m \\
\hline WP & Wetted Perimeter of Gutter Flow at Inlet & ft or m \\
\hline
\end{tabular}
SUBROUTINE CARRY(JLOC,ISUMP,GLI,DQ,QI,QC)


C******** IF INLET ON GRADE, CONTINUE AND GO TO APPROPRIATE INLET
C******** CAPACITY COMPUTATION. C******** CAPACITY COMPUTATION:
C******* SUBSEQUENT ADOITIONS/MOOIFICATIONS TO ON-GRAOE INLET
C******* CAPACITY COMPUTATIONS.)
IF(INOMG.NE.2)
GO TO \(10,20,30,40,50,60,70)\), ITYPC
C******* EQUATION FOR UNDEPRESSED CURB OPENINGS


 6*ANNANDALE,VIPGINIA**/I,1X,20A4.1.2X,20A4,11)
\(\sim\) page
\begin{tabular}{|c|c|}
\hline & WRITE(N6.15) \\
\hline \multirow[t]{4}{*}{15} & FORMATI* \(0 * * 1 / 1 / 40 \times\) * AN INLET CAPACITY EQUATION FOR UNDEPRESSED \(C\) \\
\hline & 2URB OPENING INLETS *,/,40X,* Has not yet been programmed. the use \\
\hline & 3R MAY:*) \\
\hline & WRITE(N6,18) \\
\hline \multirow[t]{5}{*}{18} &  \\
\hline & 2NOMG \(=0\) (** \(/ 045 \mathrm{X}\) (** 21 SUPPLY AN INLET CAPACITY NOMOGRAPH IN THE BLO \\
\hline & 3CK DATA**/48X** SECTIDN OF THE PROGRAM (INOMG=1)**,/,45X**3) PRO \\
\hline & 4GRAM AN INLET CAPACITY EQUATION IN SUBROUTINE CARRY (INOMG=2).*) \\
\hline & HRITE(N6,6019) \\
\hline \multirow[t]{2}{*}{6019} & FORMAT(*0*,45x,75(*-*), /,70x**PROGRAM TERMINATED*,/445x.75(*-*)) \\
\hline & stop \\
\hline \multicolumn{2}{|l|}{c} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{C******** IZZARD DESIGN EQUATIONS FOR DEPRESSED CURB OPENINGS C******** \(\mathrm{H}=0.5 \mathrm{FT}\) AND \(\mathrm{A}=\mathrm{W} / 12 \mathrm{FT}\)}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{C******** \(\mathrm{H}=0.5 \mathrm{FT}\) aND \(\mathrm{A}=\mathrm{W} / 12 \mathrm{FT}\)} \\
\hline \multirow[t]{2}{*}{20} & IF(GSI(N)*NE.0) GO TO 22 \\
\hline & HRITE(NG,21) \\
\hline \multirow[t]{4}{*}{21} &  \\
\hline & 2S1 = O (I.E., VERTICAL) BUT SHOULO ge EQUAL TO RECIPROCAL CROWN SL \\
\hline & 3OPE**/40X**OF HIGHWAY. CHECK INPUT GUTTER CHARACTERISTICS**) \\
\hline & Stop \\
\hline \multirow[t]{8}{*}{22} & SX=1./GSI(N) \\
\hline & IF(WLOCUS.LE.W) 60 T0 6009 \\
\hline & FW=.262*SQRT(3SLOPE (N))/GN(N)*( WLOCUS \(^{\text {W }}\) )*SX)**. 16666667 \\
\hline & GL1 \(=2.79 * F W * W\)-OCUS \(/ W * * .16665667 * S X * * .294\) \\
\hline & GLMAX \(=3.67 * F W * W\) LOCUS \(/ W * * .16666667 * S X * * .5\) \\
\hline & GLICO=1.85*FW*WLOCUS/W**.16666667 \\
\hline & If (GLI.GE.GLMAX) GO TO 25 \\
\hline & OI= \(0 \times(G L I / G L 1)\) \\
\hline \multirow[t]{3}{*}{26} & QI=AMINI(QI, \({ }^{\text {a }}\) \\
\hline & \(Q C=Q-Q I\) \\
\hline & RETURN \\
\hline 25 & OI \(=0 *(G L I / G L 100) * * 0.4\) \\
\hline & GO TO 26 \\
\hline \multicolumn{2}{|l|}{c} \\
\hline \multicolumn{2}{|l|}{C******** EQUATION FOR UNDEPRESSED GRATE OPENING INLETS} \\
\hline \multicolumn{2}{|l|}{c} \\
\hline 30 & WRITE(NG.35) \\
\hline \multirow[t]{6}{*}{35} & FORMAT * 0 * \(1 / 1 / 1 / 40 \times 0\) A AN INLET CAPACITY EQUATION FOR UNOEPRESSED \\
\hline & 2RATE OPENING INLETS**/,40X** HAS NOT YET BEEN PROGRAMMED. THE USER \\
\hline & 3 May :*) \\
\hline & hrite (ng.18) \\
\hline & WRITE(N6,6019) \\
\hline & STOP \\
\hline \multicolumn{2}{|l|}{\(c\) c} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{C******** EQUATION FOR DEPRESSED GRATE OPENING INLETS}} \\
\hline & \\
\hline 40 & WRITE(N6.45) \\
\hline 45 & FORMATC*0*,////,40X** AN INLET CAPACITY EQUATION FOR DEPRESSED GRA \\
\hline & 2 TE OPENING INLETS*./840X** HAS NOT YET BEEN PROGRAMMED. THE USER M \\
\hline & 3AY:*) \\
\hline & WRITE(N6,18) \\
\hline & WRITE(NG.6019) \\
\hline & stop \\
\hline \(c\) & \\
\hline C** & * Equation for undepressed comeination incets \\
\hline
\end{tabular}
```

PAGE
M
FTN 4.8*518 C1
OPT=1
SUBROUTIVE CARRY

115	c	
	50	WRITE(N6,55)
	55	FORMAT(*0*, ////,40X,* AN INLET CAPACITY EQUATION FOR UNDEPRESSED
		2OMBINATION INLETS**/40x, ${ }^{\text {3AY }}$ (*) HAS NOT YET BEEN PROGRAMMED. THE USER M
120		3AY: ${ }^{\text {WRITE }}$ (N6,18)
120		WRITE (NG,18) HRITE(NG,6019)
		HRITE (NG,6019)
		Stop
	c	
		***** EQUATION FOR DEPRESSED COMBINATION INLETS
125	c	
	60	WRITE(N6,65)
	65	
		2BINATION INLETS**/40Xo* HAS NOT YET BEEN PROGRAMMED. THE USER MAY
130		WRITE (NG,18)
		WRITE(NG.6019)
		Stop

c
c
$c * * * * * * ~ E Q U A T I O N ~ f o r ~ u n d e p r e s s e d ~ g r a t e ~ o p e n i n g s ~ i n ~ t r a p e z o i d a l ~$

```

``` C******** NOMOGRAPH
C
C**** SELECT NOMOGRA
C**** SELECT NOMOGRAPH GY CROSS-SLOPE AND GUTTER SLOPE
500 IF(GSI(N)-NE.0) GO TO 501 WRITE(NG,21)
STOP
S \(x=1 . / G S I(N)\)
IF(NPG.GT.1) GO TO 512
C**** CROSS-SLOPE
CROSS-SLOPE
CMID=CSLOP(1)
\(I F(S X C S L O P(2)-\operatorname{CSLOP}(1)) / 2\).
DO 510 II \(=2,3\) (II 1 (CSLOP(II)-CSLOP(II-1))/2.)
```



```
IF(SX.GE.CMID1.AND.SX.LT.CMID2) I=II
CONTINUE
CMID=CSLOP (3)
(\((\) CSLOP (4)
IF(SX.GE.CMID) I=4
듣
```



```
\(\stackrel{n}{-}\)
\(\stackrel{9}{\sim}\)
\(\underset{\sim}{\sim}\)
\(n\)
\(m\)
\(\stackrel{\square}{+}\)
\(\stackrel{4}{4}\)
150
tn
n
-
1 0
6
170
page
\begin{tabular}{|c|c|c|}
\hline 175 & 515 & \\
\hline 180 & \multirow[t]{4}{*}{\({ }^{\text {c.... }}\)} & INTEPPoLate if nectssary \\
\hline & & come \\
\hline 185 & & \\
\hline & & \\
\hline \multirow[t]{2}{*}{190} & 550 & \\
\hline & & \({ }_{\text {coser }}\) \\
\hline & ¢ & \\
\hline \multirow[t]{3}{*}{200
205} & & \\
\hline & & \\
\hline & 700 & \\
\hline & \({ }^{\text {c } 9000}\) & conirnue \\
\hline \multirow[t]{3}{*}{\({ }^{210}\)} & \({ }_{c}\) & calculate sump flow hith orifice eon \\
\hline & & SAREA=SLENG *SHIOTH svol \(=0\). \\
\hline & & \\
\hline \multirow[t]{2}{*}{215} & & Sotheo \\
\hline & & \\
\hline \multirow[t]{3}{*}{220} & & \\
\hline & & Mol \\
\hline & & \\
\hline \multirow[t]{2}{*}{\({ }^{225}\)} & 9015 & \\
\hline & & \\
\hline
\end{tabular}

curves are provided here - DINLG contains curves for a 2' by 4' parallel bar grate inlet on grade in a gutter (2) and DINLGC contains curves for the same inlet in a channel.

A listing of Block Data follows.

Subroutine GUTTER

This subroutine is called from the main program INLET. Subroutine CARRY is called from GUTTER to compute the carryover of the upstream inlet. Function DEPTH is called to compute upstream gutter/ channel flow depth corresponding to the average upstream gutter/channel flow. The following common blocks are utilized by GUTTER:
- BLANK COMMON
- INLET
- LENGTH
- SYS
- CONT
- LOC
- ROUT
- SUMP

The computational sequence is presented in flowchart form in Figure IV-6.

Subroutine GUTTER is called each time step from the main program to compute the gutter/channel depth and flow characteristics for the given section I of the system under consideration. Input flows are contributed from adjacent watershed subareas. (A check is made to determine if the given section is the first; if this is the case and the inflow hydrograph option has been selected, the appropriate inflow is input to the initial section). For all sections other than the initial section, a check is made to see if an inlet has been located at the top of the gutter/channel section. If this is not the case, the outflow from section I-1 is added to the inflow of section I. If an inlet is located at the beginning of section I, Function DEPTH is called to compute the depth in Section I-1 corresponding to the average flow over the time step. Subroutine CARRY

FIGURE IV-6. Fiowchart for Subroutine GUTTER
is then called with the previous calculated depth to compute the carryover flow which is added to the inflow for section I. The change in depth of the given section is computed using a Newton-Raphson technique. If any of the relevant design criteria are violated, the condition is flagged by an indicator variable and it is necessary to locate an inlet at the beginning of gutter/channel section I.

Key variables not in common are presented in Table IV-9 followed by a listing of the subroutine.

Function DEPTH

This routine is called from Subroutine GUTTER. It calls no other routines and employs no common blocks. The order of computations is shown in Figure IV-7. Function DEPTH computes the depth of flow in the given gutter/channel section corresponding to a given flow. The flow is known to occur for some depth lying between the depth at the beginning of the time step and the depth at the end of the time step. An interval halving procedure is used to estimate the unknown depth. Key variables are presented in Table IV-10 followed by the listing.

Variables in Common

\section*{Program INLET employs 12 separate common blocks as listed below:}
- BLANK COMMON
- INLET
- TAPES
- NEW
- INFL
- ROUT
- LOC
- SYS
- CONT
- LENGTH
- SLOPES
- NOMOG

TABLE IV-9
KEY VARIABLES NOT IN COMMON FOR SUBROUTINE GUTTER
\begin{tabular}{|c|c|c|}
\hline Fortran Variable & Description & Units \\
\hline AXD & Flow Area in the Gutter Section at Start of Time Step & \(f t^{2}\) or \(m^{2}\) \\
\hline AXI & Flow Area in the Gutter Section at End of Time Step & \(f t^{2}\) or \(\mathrm{m}^{2}\) \\
\hline DAXI & Derivative of Flow Area with Respect to Change in Depth & ft or m \\
\hline DDELV & Derivative of Flow Volume with Respect to Change in Depth & \(\mathrm{ft}^{2}\) or \(\mathrm{m}^{2}\) \\
\hline DEL & Change in Depth & ft or m \\
\hline DELV & Volume in the Gutter Section as a Function of Change in Depth & \(\mathrm{ft}^{3}\) or \(\mathrm{m}^{3}\) \\
\hline DF & Derivative of Newton-Raphson F Function & \(\mathrm{ft}^{2}\) or \(\mathrm{m}^{2}\) \\
\hline DFL.OW1 & Derivative of Flow at End of Time Step With Respect to Change in Depth & \(\mathrm{cfs} / \mathrm{ft}\) or \(\mathrm{cms} / \mathrm{m}\) \\
\hline DWP1 & Derivative of Wetted Perimeter with Respect to Change in Depth & - \\
\hline \(D \varnothing\) & Depth at Beginning of the Time Step & ft or m \\
\hline D1 & Depth at End of the Time Step & ft or m \\
\hline F & Newton-Raphson F Function & \(\mathrm{ft}^{3}\) or \(\mathrm{m}^{3}\) \\
\hline FL & Carryover Ratio & \({ }^{-}\) \\
\hline FLOW & Average Flow over the Time Step & \(\mathrm{ft}^{3}\) or \(\mathrm{m}^{3}\) \\
\hline FLOWø & Flow at Depth at Beginning of the Time Step & \(\mathrm{ft}^{3}\) or \(\mathrm{m}^{3}\) \\
\hline FLOW1 & Flow at Depth at End of the Time Step & \(\mathrm{ft}^{3}\) or \(\mathrm{m}^{3}\) \\
\hline GL & Length of Upstream Inlet & ft or m \\
\hline IFLG & Flag Set When Gutter Depth Exceeds Design Depth & - \\
\hline Q & Total Flow at Upstream Inlet & cfs or cms \\
\hline QC & Carryover from Upstream Inlet & cfs or cms \\
\hline QI & Interception at Upstream Inlet & cfs or cms \\
\hline
\end{tabular}

TABLE IV-9
(cont.)
\begin{tabular}{|c|c|c|}
\hline Fortran Variable & Description & Units \\
\hline RAD1 & Hydraulic Radius at End of Time Step & ft or m \\
\hline VOL】 & Volume at the Beginning of the Time Step & \(\mathrm{ft}^{3}\) or m \({ }^{3}\) \\
\hline WPD & Wetted Perimeter at Start of Time Step & ft or m \\
\hline WP1 & Wetted Perimeter at End of Time Step & ft or m \\
\hline IROUT & Inlet Locator Indicator & - \\
\hline IC & Flag Set When Carryover Rato for Inlets Exceeds Design Value & - \\
\hline J & Gutter Section Number & - \\
\hline
\end{tabular}

\[
\begin{aligned}
& \text { SUMWQ(J)=0. } \\
& \text { DO } 220 \text { JK }=1,2
\end{aligned}
\]
\[
\begin{aligned}
& \text { IHYD=0 } \\
& \text { IF }(I H Y D) 603,603,611 \\
& Q 11 \text { QCGFLOH(NINCR+1) } \\
& G O T O 612
\end{aligned}
\]
\[
\begin{aligned}
& \text { GOTO } 612 \\
& \text { IFIROUT-1) } 601,6009600
\end{aligned}
\]
\[
\begin{aligned}
& C * * * * * * * * C A R R Y O V E R ~ F R O M ~ U P S T R E A M ~ I N L E T ~ \\
& C
\end{aligned}
\]
\[
\begin{aligned}
& \text { ISUMP=0 } \\
& \text { DQ=DEPTH(DELD(J-I) GOEPTH(J-1) GFLOW(J-1), GCON(N), GHIDTH\&N: GSI(N) } \\
& \text { 2-GS2(N)) }
\end{aligned}
\]
\[
\begin{aligned}
& 2 . G S 2(N)) \\
& J L O C=J=1
\end{aligned}
\]
\[
\begin{aligned}
& \text { JLOC=J=I } \\
& \text { CALL CARRY (NLOC, ISUMP GLI,DQ,QI,OCS } \\
& \text { SUMQI=SUMOI } O Q I \text { TOELY }
\end{aligned}
\]
\[
\begin{aligned}
& \text { SUMQI=SU } \\
& Q=Q I+Q C \\
& I F \& F L O W
\end{aligned}
\]
\[
\begin{aligned}
& \mathrm{C} \\
& \mathrm{C} * * * * * * * * \text { INPUTS FROM ADJACENT WATERSHED AREAS } \\
& \mathrm{C}
\end{aligned}
\]
\[
\begin{aligned}
& 0 \\
& 0 \\
& 10 \\
& 0 \\
& 2 \\
& \vdots \\
& \hline
\end{aligned}
\]
\[
\begin{array}{ll}
\sum_{0} & 0 \\
c & 11 \\
0 & 4 \\
k & 6
\end{array}
\]
IF (Q.GTOO FC=QCRO
IF\&FCOGT-FR(ICOUNTY) FR(ICOUNT)=FC

N葆


```

PAGE
01/27/81 16.40.03
FTM 4.8*518

```


FIGURE IV-7. Flowchart for Function DEPTH

TABLE IV-10
KEY VARIABLES NOT IN COMMON FOR FUNCTION DEPTH
\begin{tabular}{|c|c|c|}
\hline Fortran Variable & Description & Units \\
\hline A & Flow Area at Trial Depth & \(\mathrm{ft}^{2}\) or \(\mathrm{m}^{2}\) \\
\hline D & Trial Depth & ft or m \\
\hline DEPTH & Final Depth Estimate & ft or m \\
\hline D \(\emptyset\) & Starting Depth 1 & ft or m \\
\hline D1 & Starting Depth 2 & ft or m \\
\hline K & Gutter/Channel Flow Constant & \(\mathrm{cfs} / \mathrm{ft}^{8 / 3}\) or \(\mathrm{cms} / \mathrm{m}^{8 / 3}\) \\
\hline NINT & Iteration Counter & - \\
\hline Q & Flow at Trial Depth & cfs or cms \\
\hline QF & Given Flow & cfs or cms \\
\hline S1 & Gutter/Channe1 Side Slope 1 & \(\mathrm{ft} / \mathrm{ft}\) or \(\mathrm{m} / \mathrm{m}\) \\
\hline S2 & Gutter/Channel Side Slope 2 & \(\mathrm{ft} / \mathrm{ft}\) or \(\mathrm{m} / \mathrm{m}\) \\
\hline TD & Initial Starting Depth 1 & ft or m \\
\hline T1 & Initial Starting Depth 2 & ft or m \\
\hline W & Gutter/Channel Width & ft or m \\
\hline WP & Wetted Perimeter at Trial Depth & ft or m \\
\hline
\end{tabular}
```

- 

page
01/27/81 16.40.03
FIN 4.8+518

```


The variables contained in each block are presented in Tables IV-11 through IV-23.

TABLE TV-11
BLANK COMMON
\begin{tabular}{|c|c|c|c|}
\hline Fortran Variable & Description & Units & Input Data \\
\hline NW & Dimension for Number of Watersheds & - & No \\
\hline NG & Dimension for Number of Gutters or Channels & - & No \\
\hline HISTOG & Rainfall Interval & seconds & No \\
\hline TRAIN & End Time of Rainfall & seconds & No \\
\hline DELT & Time Step Length & minutes & Yes \\
\hline DELT1 & Half Time Step Length & seconds & No \\
\hline NOW & Number of Watersheds & - & No \\
\hline NOG & Number of Gutters or Channels & - & No \\
\hline NSTEP & Number of Time Steps Simulated & - & Yes \\
\hline TAREA & Total Watershed Area & acres or hectares & No \\
\hline TIME & Current Simulation Time at End of Time Step & seconds & No \\
\hline TIME2 & Current Simulation Time at Middle of Time Step & seconds & No \\
\hline RI & Rainfall Rate & \(\mathrm{ft} / \mathrm{sec}\) or \(\mathrm{m} / \mathrm{sec}\) & No \\
\hline RLOSS & Rainfall Loss Due to Infiltration and Depression Storage & \(\mathrm{ft} / \mathrm{sec}\) or \(\mathrm{m} / \mathrm{sec}\) & No \\
\hline TZERO & Initial Simulation Time & seconds & No \\
\hline IMET & Flag for Metric Units Option & - & Yes \\
\hline WFLOW(200) & Watershed Subarea Flows Contributory to Gutter/Channe 1 & cfs or cms & No \\
\hline WWIDTH(200) & Watershed Width & ft or m & No \\
\hline WSLOPE (200,3) & Watershed Subarea Slopes & \(\mathrm{ft} / \mathrm{ft}\) or \(\mathrm{m} / \mathrm{m}\) & Yes \\
\hline WN(200) & Gutter Depth Storage Array & ft or m & No \\
\hline WSTORE (200, 3) & Watershed Subarea Depression Storage Depth & in or mm & Yes \\
\hline WDEPTH \((200,3)\) & Watershed Subarea Depth & ft or m & No \\
\hline WAREA (200, 3) & Watershed Subarea Area Fraction & - & Yes \\
\hline
\end{tabular}

TABLE IV-11
(Cont.)

TABLE IV-12
COMMON BLOCK INLET
\begin{tabular}{llll}
\hline \begin{tabular}{l}
Fortran \\
Variable
\end{tabular} & \multicolumn{1}{c}{ Description } & Units & \begin{tabular}{l}
Input \\
Data
\end{tabular} \\
\hline G,F & Capture Ratio for Inlets on Grade & - & Yes \\
ITYPC & Inlet Type on Grade & - & Yes \\
ITYPS & Inlet Type in Sump & - & Yes \\
DX & Routing Increment & ft or m & Yes \\
XSTRT & Starting Coordinate for Stationing & ft or m & No \\
XFIN & Ending Coordinate for Stationing & ft or m & No \\
W & Grate Width for Inlets on Grade & ft or m & Yes \\
A & Depression Depth for Inlets on Grade & ft or m & No \\
X1 & Starting Coordinate for Routing & ft or m & No \\
RD & Inlet Capacity Reduction Factor & - & Yes \\
& & & \\
\hline
\end{tabular}

TABLE IV-13
COMMON BLOCK TAPES
\begin{tabular}{llll}
\hline \begin{tabular}{l}
Fortran \\
Variable
\end{tabular} & \multicolumn{1}{c}{ Description } & Units & \begin{tabular}{l}
Input \\
Data
\end{tabular} \\
\hline NTAPE & \begin{tabular}{l}
Watershed Flow Tape Number \\
Upstream Gutter Depth Scratch \\
Tape Number
\end{tabular} & - & Yes \\
NU & \begin{tabular}{l}
Downstream Gutter Depth Scratch \\
Tape Number
\end{tabular} & - & Yes \\
ND & \begin{tabular}{l}
Input File Unit Number \\
N5
\end{tabular} & Output File Unit Number & - \\
N6 & & - & Yes \\
\hline
\end{tabular}

TABLE IV-14
COMMON BLOCK NEW
\begin{tabular}{llcc}
\hline \begin{tabular}{l}
Fortran \\
Variable
\end{tabular} & Description & Units & Input \\
\hline NAMEG(200 & \begin{tabular}{l}
Name of Gutter/Channe1
\end{tabular} \\
\begin{tabular}{ll}
GGTO(200) \\
Wutter/Channel Side Number for \\
Watershed Drainage
\end{tabular} & - & Yes \\
\hline
\end{tabular}

TABLE IV-15
COMMON BLOCK INFL
\begin{tabular}{llll}
\hline \begin{tabular}{l}
Fortran \\
-Variable
\end{tabular} & \multicolumn{1}{c}{ Description } & Units & \begin{tabular}{c}
Input \\
Data
\end{tabular} \\
\hline INFIL & Number of Infiltration Types & - & Yes \\
WTYPE(200,3) & \begin{tabular}{l}
Infiltration Type for Watershed \\
Subareas
\end{tabular} & - & Yes \\
WLMAX(4) & Maximum Infiltration Rate & \(\mathrm{in} / \mathrm{hr}\) or \(\mathrm{mm} / \mathrm{hr}\) & Yes \\
WLMIN(4) & Minimum Infiltration Rate & in \(/ \mathrm{hr}\) or \(\mathrm{mm} / \mathrm{hr}\) & Yes \\
DECAY(4) & Infiltration Decay Rate & \(\mathrm{sec}^{-1}\) & Yes \\
\(\operatorname{DEPIN(4)~}\) & Maximum Infiltration Depth & in or mm & Yes \\
\hline
\end{tabular}

TABLE IV-16
COMMON BLOCK ROUT
\begin{tabular}{llcl}
\hline \begin{tabular}{lll}
Fortran \\
Variable
\end{tabular} & & Description & Units
\end{tabular}

TABLE IV-1?
COMMON BLOCK LOC
\begin{tabular}{llcc}
\hline \begin{tabular}{l}
Fortran \\
Variable
\end{tabular} & \multicolumn{1}{c}{ Description } & Units & Input \\
\hline ICOUNT & Number of Inlets Spaced & & No \\
XLOCUS(6) & Gutter/Channel Stationing at Inlet & ft or m & No \\
DLOCUS(6) & Gutter/Channel Depth at Inlet & ft or m & No \\
XGLI \((6)\) & Inlet Length & ft or m & No \\
FR(6) & Carryover Ratio & - & No \\
\hline
\end{tabular}

TABLE IV-18
COMMON BLOCK SYS
\begin{tabular}{llll}
\hline \begin{tabular}{l}
Fortran \\
Variable
\end{tabular} & \multicolumn{1}{c}{ Description } & Units & \begin{tabular}{c}
Input \\
Data
\end{tabular} \\
\hline NINCR & Number of \(\Delta X\) Increments for Routing & - & No \\
NGUT(200) & \begin{tabular}{l}
Gutter/Channel Connectivity for \(\Delta X\) \\
Increments
\end{tabular} & - & No \\
NWAT(200,2) & \begin{tabular}{l}
Watershed Connectivity for \(\Delta X\) \\
Increments
\end{tabular} & - & No \\
NPG & Gutter vs. Channel Option & - & Yes \\
\hline
\end{tabular}

TABLE IV-19
COMMON BLOCK CONT
\begin{tabular}{llll}
\hline \begin{tabular}{lll}
Fortran \\
Variable
\end{tabular} & & Description & Units
\end{tabular} \begin{tabular}{l}
Input \\
Data
\end{tabular}

TABLE IV-20
COMMON BLOCK LENGTH
\begin{tabular}{llcc}
\hline \begin{tabular}{l}
Fortran \\
Variable
\end{tabular} & \multicolumn{1}{c}{ Description } & Units & \begin{tabular}{c}
Input \\
Data
\end{tabular} \\
\hline GLI & Inlet Length on Grade & ft or \(m\) & Yes \\
GLIS & Inlet Length in Sump & ft or m & Yes \\
NSPEC & Number of Prespecified Inlets & - & Yes \\
ISPEC & Number of Next Prespecified Inlets & - & No \\
NLOC(20) & Location of Prespecified Inlets & - & No \\
XSPEC(20) & Length of Prespecified Inlets & ft or m & Yes
\end{tabular}

TABLE IV-21
COMMON BLOCK SLOPES
\begin{tabular}{llll}
\hline \begin{tabular}{l}
Fortran \\
Variable
\end{tabular} & \multicolumn{1}{c}{ Description } & Units & \begin{tabular}{c}
Input \\
Data
\end{tabular} \\
\hline ISLOP(4) & \begin{tabular}{c}
Reciprocal Cross-Slopes Corresponding \\
to Inlet Efficiency Curves \\
Longitudinal Slopes Corresponding \\
to Inlet Efficiency Curves
\end{tabular} & - & No \\
SLOP(4) & \begin{tabular}{l}
Cross-Slopes Corresponding to \\
Inlet Efficiency Curves
\end{tabular} & - & No \\
CSLOP(4) & & - & No \\
\hline
\end{tabular}

TABLE IV-22
COMMON BLOCK NOMOG
\begin{tabular}{llll}
\hline \begin{tabular}{l}
Fortran \\
Variable
\end{tabular} & \multicolumn{1}{c}{ Description } & Units & \begin{tabular}{c}
Input \\
Data
\end{tabular} \\
\hline INOMG & \begin{tabular}{c}
Inlet on Grade Capacity \\
Computation Option \\
Inlet In Sump Capacity Computation \\
Option
\end{tabular} & - & Yes \\
INOMS* & \begin{tabular}{l}
Inlet Efficiency Curves for Inlet \\
on Grade \\
Inlet Efficiency Curves for Inlet on \\
Grade in Gutter (Block Data)
\end{tabular} & - & Yes \\
DINLG(4,6,12) & - & Yes \\
DINLGC(6,12) & \begin{tabular}{l}
Inlet Efficiency Curves for Inlet on \\
Grade in Chamnel (Block Data)
\end{tabular} & No & No
\end{tabular}
*Variable not presently used.

TABLE IV-23
COMMON BLOCK SUMP
\begin{tabular}{|c|c|c|c|}
\hline Fortran Variable & Description & Units & \begin{tabular}{l}
Input \\
Data
\end{tabular} \\
\hline SVOL & Volume of ponded water in sump & \(\mathrm{ft}^{3}\) or \(\mathrm{m}^{3}\) & No \\
\hline FVOL & Volume of ponded water in excess of sump volume & \(\mathrm{ft}^{3}\) or m \({ }^{3}\) & No \\
\hline SHMAX & Depth of ponded water in sump & ft or m & No \\
\hline SSMAX & Spread of ponded water at sump & ft or m & No \\
\hline SWIDTH & Width of sump inlet grate & ft or m & Yes \\
\hline SLENG & Length of sump inlet grate & ft or m & Yes \\
\hline SCOEFF & Orifice Discharge Coefficient for sump & - & Yes \\
\hline SFLOW (100) & Flow into sump & cfs or cms & No \\
\hline SQMAX & Maximum flow into sump & cfs or cms & No \\
\hline
\end{tabular}

\section*{EXAMPLE PROBLEM}

The remainder of this chapter presents the input and output from an example problem. The simulated area includes approximately 2200 feet of highway and two acres of contributory drainage area. In this problem, the program locates nine grate inlets, using the two-year storm as the design event.

The input card deck for this problem is reproduced as Exhibit IV-1; the output is given as Exhibit IV-2.
\(\stackrel{\rightharpoonup}{0}\)

\begin{tabular}{lllllll}
\(M\) & \(M\) & \(M\) & \(M\) & \(M\) & \(M\) & \(M\) \\
\hdashline & 0 & 0 & \(\square\) & 0 & 0 & 0
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 10 & \(\omega\) & 0 & 0 & ぃ & 0 & in & 0 & 0 \\
\hline \(\cdots\) & \(\infty\) & \(\infty\) \\
\hline N & N & \(\cdots\) & N & \(\cdots\) & N & N & & \\
\hline N & \(\cdots\) & N & \(\cdots\) & N & \(N\) & N & & \\
\hline ! & 4 & + & \(\xrightarrow{3}\) & \(!\) & 0 & 0 & & \\
\hline \(N\) & N & N & N & N & N & * & \(n\) & in \\
\hline & & & & & & - & N & \(\cdots\) \\
\hline 0 & 0 & 0 & 0 & \(\sigma\) & 0 & 0 & & \\
\hline - & -1 & \(\cdots\) & - & - & - & \(\cdots\) & \(\cdots\) & \\
\hline & & & & & & & \(\infty\) & \(\infty\) \\
\hline
\end{tabular}

\[
\begin{array}{rrrr}
-\infty & -1 & -M \\
0 & N & M \\
O & 0 & -
\end{array}
\]

beitish units (fps system) are used
NUMEER OF RAINGAGES 1
NUMEER OF
INTERVALS
INTERVAL
DURATIONRMIRS 16
EXHIBIT IV-2. Example Problem Output

Exhibit IV-2 (Continued)

Exhibit IV-2 (Continued)

Exhibit IV-2 (Continued)
VIRGINIA INTERSTATE 66 PROJECT DO66-000-101, GRATE INLET WITH 2 YEAR Storm
***** INLET DESIGN PROGRAM

Exhibit IV-2 (Continued)
FEDERAL HIGHWAY ADMINISTRATION
OEPARTMENT OF TRANSPORTATION
WASHINGTON D.C.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { WATERSHED } \\
& \text { NO. }
\end{aligned}
\] & WATERSHEU NAME & \[
\underset{1}{\text { STATION }}
\] & \[
\underset{2}{\text { STATION }}
\] & GUTTER
SIDE & \[
\begin{gathered}
\text { RAINGAGE } \\
\text { NO. }
\end{gathered}
\] & \[
\begin{aligned}
& \text { AREA } \\
& \text { ACRES) }
\end{aligned}
\] & NUMBER OF SUBAREAS \\
\hline 1 & 2999 & \(867+25\) & \(889+50\) & 1 & 1 & 1.63 & 2 \\
\hline & & subarea & definitio & & & & \\
\hline & AREA & infiltration & N SLOPE & storage & Manning n & & \\
\hline & (ACRES) & type & (FT/FT) & (IN) & (FT)1/6 & & \\
\hline & 1.10 & 0 & . 02 & . 05 & . 01 & & \\
\hline & . 54 & 0 & . 05 & . 08 & . 01 & & \\
\hline \[
\begin{aligned}
& \text { WATERSHED } \\
& \text { NO. }
\end{aligned}
\] & WATERSHED NAME & STATION & \[
{ }_{2}^{\text {STATION }}
\] & \begin{tabular}{l}
gutter \\
SIDE
\end{tabular} & \[
\begin{aligned}
& \text { RAINGAGE } \\
& \text { NO. }
\end{aligned}
\] & \begin{tabular}{l}
AP.EA \\
(ACRES)
\end{tabular} & NUMBER OF SUBAREAS \\
\hline 2 & 2998 & \(867+25\) & \(889+50\) & 2 & 1 & . 03 & 1 \\
\hline
\end{tabular}
ERROR IN CONTINUITY, PERCENTAGE OF INFLOW
Exhibit IV-2 (Continued)
\begin{tabular}{|c|c|c|}
\hline FEDERAL HIGHWAY ADMINISTRATION & **** URBAN HIGHWAY DRAINAGE MODEL & **** WATER RESCURCES DIVISION \\
\hline DEPARTMENT OF TRANSPORTATION & **** & **** CAMP DRESSER + MCKEE \\
\hline WASHINGTON D.C. & **** INLET DESIGN PROGRAM & **** ANNANDALE,VIRGINIA \\
\hline EXAMPLE FROBLEM & & \\
\hline virginia interstate gg project & 1, GRate inlet with 2 year storm & \\
\hline
\end{tabular}

Exhibit IV-2 (Continued)

\[
\begin{aligned}
& \text { INLET LOCATED AT STATION } 885+25 \cdots-\cdots \text { ON GRADE ------ } \\
& \begin{array}{r}
.0070 \\
0.00 \mathrm{FT} \\
19.2000 \\
.5774
\end{array}
\end{aligned}
\]
Exhibit IV-2 (Continued)

(pənu!7uoj) z-ヘI 7!9! \(4 \times 3\)

DEPRESSED COMBINATION
DESIGN CARRYOVERO．OO OF
DESIGN CARRYOVERO．OO OF PEAK FLOW
MAXIMUM CARRYOVER RATIOO．00
\(137 N I\) 1甘 SJIISI甘31JVタVHJ T3NNVHJ／甘311ก9

PEAK hydraulic conditions at inlet
LOW SFREAD velocity
Exhibit IV－2（Continued）

Exhibit IV-2 (Continued)

Exhibit IV-2 (Continued)
FEDERAL HIGHWAY ADMINISTRATION
OEPARTMENT OF TRANSPORTATICN
WASHINGTON D.C.
EXAMPLE FROBLEM
 .0090
0.00 FT
19.2010
.5774
\[
\begin{aligned}
& 5.23 \mathrm{FT} \\
& .26 \mathrm{FT} \\
& 1.91 \mathrm{CFS} \\
& 2.76 \mathrm{FPS}
\end{aligned}
\]
Exhibit IV-2 (Continued)

VIRGINIA INTERSTATE G6 PROJECT 0066-000-101. GRATE INLET WITH. 2 YEAR STORM

Exhibit IV-2 (Continued)
1. Izzard, Carl F., "Simplified Method for Design of Curb Opening Inlets", Transportation Research Record 631, Transportation Research Board, Washington, D.C. 1977.
2. Burgi, P.H. and D. E. Gober, "Bicycle-Safe Grate Inlets Study, Volume 1 - Hydraulic and Safety Characteristics of Selected Grate Inlets on Continuous Grades," Report No. FHWA-RD-77-24, Federal Highway Administration, Washington, D.C., June 1977.
3. American Society of Civil Engineers, Manual of Engineering Practice No. 37, Design and Construction of Sanitary and Storm Sewers, 1962.
4. Golding, B., "HNV-Santa Barbara Urban Hydrograph Method," Proceedings of the Storm Water Management Model Users Group Meeting, June 19-20, 1980, U.S. Environmental Protection Agency (to be published).
5. Roesner, L.A., P.R. Giguere, and L.C. Davis, "User's Manual for the Storm Runoff Quality Model RUNQUAL," prepared for the Southeast Michigan Council of Governments, July 1977.
6. Crawford, N.H. and R.K. Linsley, Digital Simulation in Hydrology, Stanford Watershed Model IV, 1966.

\section*{FEDERALLY COORDINATED PROGRAM (FCP) OF HIGHWAY RESEARCH AND DEVELOPMENT}

The Offices of Research and Development (R\&D) of the Federal Highway Administration (FHWA) are responsible for a broad program of staff and contract research and development and a Federal-aid program, conducted by or through the State highway transportation agencies, that includes the Highway Planning and Research (HP\&R) program and the National Cooperative Highway Research Program (NCHRP) managed by the Transportation Research Board. The FCP is a carefully selected group of projects that uses research and development resources to obtain timely solutions to urgent national highway engineering problems.*

The diagonal double stripe on the cover of this report represents a highway and is color-coded to identify the FCP category that the report falls under. A red stripe is used for category l; dark blue for category 2 , light blue for category 3, brown for category 4, gray for category 5, green for categories 6 and 7 , and an orange stripe identifies category 0 .

\section*{FCP Category Descriptions}
1. Improved Highway Design and Operation for Safety
Safety R\&D addresses problems associated with the responsibilities of the FHWA under the Highway Safety Act and includes investigation of appropriate design standards, roadside hardware, signing, and physical and scientific data for the formulation of improved safety regulations.
2. Reduction of Traffic Congestion, and Improved Operational Efficiency
Traffic R\&D is concerned with increasing the operational efficiency of existing highways by advancing technology, by improving designs for existing as well as new facilities, and by balancing the demand-capacity relationship through traffic management techniques such as bus and carpool preferential treatment, motorist information, and rerouting of traffic.
3. Environmental Considerations in Highway Design, Location, Construction, and Operation
Environmental R\&D is directed toward identifying and evaluating highway elements that affect

\footnotetext{
- The complete seven-volume official statement of the FCP is available from the National Technical Inforraation Service, Springfield, Va. 22161. Single copies of the introductory volume are available without charge from Program Analysis (HRD-3), Offices of Research and Development, Federal Bighway Administration, Washington, D.C. 20590.
}
the quality of the human environment. The goals are reduction of adverse highway and traffic impacts, and protection and enhancement of the environment.

\section*{4. Improved Materials Utilization and Durability}

Materials R\&D is concerned with expanding the knowledge and technology of materials properties, using available natural materials, improving structural foundation materials, recycling highway materials, converting industrial wastes into useful highway products, developing extender or substitute materials for those in short supply, and developing more rapid and reliable testing procedures. The goals are lower highway construction costs and extended maintenance-free operation.
5. Improved Design to Reduce Costs, Extend Life Expectancy, and Insure Structural Safety
Structural R\&D is concerned with furthering the latest technological advances in structural and hydraulic designs, fabrication processes, and construction techniques to provide safe, efficient highways at reasonable costs.
6. Improved Technology for Highway Construction

This category is concerned with the research, development, and implementation of highway construction technology to increase productivity, reduce energy consumption, conserve dwindling resources, and reduce costs while improving the quality and methods of construction.

\section*{7. Improved Technology for Highway Maintenance}

This category addresses problems in preserving the Nation's highways and includes activities in physical maintenance, traffic services, management, and equipment. The goal is to maximize operational efficiency and safety to the traveling public while conserving resources.

\section*{0. Other New Studies}

This category, not included in the seven-volume official statement of the FCP, is concerned with HP\&R and NCHRP studies not specifically related to FCP projects. These studies involve R\&D support of other FHWA program office research.```

